Frequency Domain Hybrid Finite Element Methods in Electromagnetics
暫譯: 電磁學中的頻域混合有限元素方法
Volakis/Usner/Sertel
- 出版商: Morgan & Claypool
- 出版日期: 2006-09-30
- 售價: $1,930
- 貴賓價: 9.5 折 $1,834
- 語言: 英文
- 頁數: 156
- ISBN: 1598293923
- ISBN-13: 9781598293920
-
相關分類:
電磁學 Electromagnetics
海外代購書籍(需單獨結帳)
相關主題
商品描述
Description
This book provides a brief overview of the popular Finite Element Method (FEM) and its hybrid versions for electromagnetics with applications to radar scattering, antennas and arrays, guided structures, microwave components, frequency selective surfaces, periodic media, and RF materials characterizations and related topics. It starts by presenting concepts based on Hilbert and Sobolev spaces as well as Curl and Divergence spaces for generating matrices, useful in all engineering simulation methods. It then proceeds to present applications of the finite element and finite element-boundary integral methods for scattering and radiation. Applications to periodic media, metamaterials and bandgap structures are also included. The hybrid volume integral equation method for high contrast dielectrics and is presented for the first time. Another unique feature of the book is the inclusion of design optimization techniques and their integration within commercial numerical analysis packages for shape and material design. To aid the reader with the method's utility, an entire chapter is devoted to two-dimensional problems. The book can be considered as an update on the latest developments since the publication of our earlier book (Finite Element Method for Electromagnetics, IEEE Press, 1998). The latter is certainly complementary companion to this one.
商品描述(中文翻譯)
**描述**
本書提供了流行的有限元素法(Finite Element Method, FEM)及其混合版本在電磁學中的簡要概述,應用於雷達散射、天線和陣列、導波結構、微波元件、頻率選擇性表面、週期性媒介以及射頻材料特性等相關主題。書中首先介紹基於希爾伯特空間(Hilbert spaces)和索博列夫空間(Sobolev spaces)以及旋度(Curl)和散度(Divergence)空間的概念,以生成在所有工程模擬方法中有用的矩陣。接著,書中展示了有限元素法和有限元素-邊界積分法在散射和輻射中的應用。還包括對週期性媒介、超材料和帶隙結構的應用。首次介紹了高對比介電材料的混合體積積分方程法。本書的另一個獨特特點是包含設計優化技術及其在商業數值分析軟體中的整合,用於形狀和材料設計。為了幫助讀者理解該方法的實用性,專門有一章 devoted於二維問題。本書可視為自我們早期出版的書籍(《電磁學的有限元素法》,IEEE Press,1998年)以來最新發展的更新,後者無疑是本書的補充伴侶。