Handbook of Graph Theory, Combinatorial Optimization, and Algorithms (Hardcover)
暫譯: 圖論、組合優化與演算法手冊 (精裝版)

Krishnaiyan ""KT"" Thulasiraman, Subramanian Arumugam, Andreas Brandstädt, Takao Nishizeki

  • 出版商: Chapman and Hall/CRC
  • 出版日期: 2015-12-14
  • 售價: $10,210
  • 貴賓價: 9.5$9,700
  • 語言: 英文
  • 頁數: 1244
  • 裝訂: Hardcover
  • ISBN: 1584885955
  • ISBN-13: 9781584885955
  • 相關分類: Algorithms-data-structures
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

The fusion between graph theory and combinatorial optimization has led to theoretically profound and practically useful algorithms, yet there is no book that currently covers both areas together. Handbook of Graph Theory, Combinatorial Optimization, and Algorithms is the first to present a unified, comprehensive treatment of both graph theory and combinatorial optimization.

Divided into 11 cohesive sections, the handbook’s 44 chapters focus on graph theory, combinatorial optimization, and algorithmic issues. The book provides readers with the algorithmic and theoretical foundations to:

  • Understand phenomena as shaped by their graph structures
  • Develop needed algorithmic and optimization tools for the study of graph structures
  • Design and plan graph structures that lead to certain desirable behavior

With contributions from more than 40 worldwide experts, this handbook equips readers with the necessary techniques and tools to solve problems in a variety of applications. Readers gain exposure to the theoretical and algorithmic foundations of a wide range of topics in graph theory and combinatorial optimization, enabling them to identify (and hence solve) problems encountered in diverse disciplines, such as electrical, communication, computer, social, transportation, biological, and other networks.

商品描述(中文翻譯)

圖論與組合最佳化的融合產生了理論上深刻且實用的演算法,但目前尚無一本書同時涵蓋這兩個領域。《圖論、組合最佳化與演算法手冊》是首本提供圖論與組合最佳化統一且全面的處理的書籍。

本手冊分為11個緊密相關的部分,共44章,專注於圖論、組合最佳化及演算法問題。該書為讀者提供了以下的演算法和理論基礎:

- 理解由其圖形結構所塑造的現象
- 開發研究圖形結構所需的演算法和最佳化工具
- 設計和規劃導致某些期望行為的圖形結構

本手冊由超過40位全球專家貢獻,為讀者提供解決各種應用問題所需的技術和工具。讀者將接觸到圖論和組合最佳化中廣泛主題的理論和演算法基礎,使他們能夠識別(並因此解決)在電氣、通信、計算機、社會、交通、生物及其他網絡等多個學科中遇到的問題。