Advanced Methods And Tools for ECG Data Analysis
暫譯: 心電圖數據分析的進階方法與工具

Gari D. Clifford, Francisco Azuaje, Patrick McSharry

  • 出版商: Artech House Publish
  • 出版日期: 2006-09-01
  • 售價: $6,270
  • 貴賓價: 9.5$5,957
  • 語言: 英文
  • 頁數: 384
  • 裝訂: Hardcover
  • ISBN: 1580539661
  • ISBN-13: 9781580539661
  • 相關分類: Data Science
  • 無法訂購

相關主題

商品描述

Description:

This cutting-edge resource provides you with a practical and theoretical understanding of state-of-the-art techniques for electrocardiogram (ECG) data analysis. Placing an emphasis on the fundamentals of signal etiology, acquisition, data selection, and testing, this comprehensive volume presents guidelines to help you design, implement, and evaluate algorithms used for the analysis of ECG and related data. Additionally, explanations of open source software and related databases for signal processing are given.

The book focuses on the modeling, classification, and interpretation of features derived from advanced signal processing and artificial intelligence techniques. Key topics covered include physiological origin, hardware acquisition and filtering, time-frequency quantification of the ECG and derived signals (including heart rate variability and respiration), analysis of noise and artifact, models for ECG and RR interval processes, linear and nonlinear filtering techniques, and adaptive algorithms such as neural networks.

Much of the book is devoted to deriving robust, clinically meaningful parameters such as the QRS axis, QT-interval, the ST-level, and T-wave alternan metrics. Methods for applying these metrics to clinical classification are also discussed, together with supervised and unsupervised classification techniques. Including over 190 illustrations, the book offers you a solid grounding in the relevant basics of physiology, data acquisition and database design, and addresses the practical issues of improving existing data analysis methods and developing new applications.

Table of Contents:

Preface.

Introduction ?Introduction to Physiological Basis and Clinical Interpretation of ECG. Introduction to ECG Information Acquisition, Representation and Storage. Advanced Signal Processing and Artificial Intelligence for ECG Data Analysis.

Mathematical Characterization of the ECG and Its Contaminants ?Noise/Signal/Artifact Comparision, Characterizing Unwanted? Signals Through Measures of Stationarity, Gaussianity, Nonlinearity, and Color. Long Term Trends (Circadian Rhythms, Segmentation, Nonstationary Shifts).

Filtering, Compression, Decompression, and Interpolation ? Linearity and Stationary Filtering and Compression, Resampling, Interpolation, and Wavelets. Multidimensional Filtering. Nonlinear Projective Filtering.

Feature Extraction ?Feature Extraction from ECG. Temporal Feature Extraction ECG-Derived Respiration and Heart Rate Variability.

Supervised and Unsupervised Classification ‑ Introduction to Linear Supervised Learning. Supervised Neural Networks. Support Vector Machine Methods. Clustering-Based Analysis Methods. Unsupervised Learning Methods for Supporting Pattern Discovery and Interpretation. Hybrid Intelligent Classification Techniques.

Visualization Methods, Knowledge Management and Emerging Methods ?Methods for Displaying ECG Information and Analysis Outcomes. Methods for Automatically Describing and Evaluating ECG Data Clusters and Classes. Introduction to Causal Reasoning.

商品描述(中文翻譯)

**描述:**
這本前沿資源提供您對心電圖(ECG)數據分析的最先進技術的實用和理論理解。強調信號病因學、獲取、數據選擇和測試的基本原則,本書全面呈現了幫助您設計、實施和評估用於ECG及相關數據分析的算法的指導方針。此外,還提供了有關信號處理的開源軟體和相關數據庫的解釋。

本書專注於從先進的信號處理和人工智慧技術中衍生的特徵的建模、分類和解釋。涵蓋的關鍵主題包括生理來源、硬體獲取和過濾、ECG及衍生信號(包括心率變異性和呼吸)的時間-頻率量化、噪聲和工件的分析、ECG和RR間隔過程的模型、線性和非線性過濾技術,以及如神經網絡等自適應算法。

本書的大部分內容致力於推導穩健且臨床有意義的參數,如QRS軸、QT間隔、ST水平和T波交替指標。還討論了將這些指標應用於臨床分類的方法,以及監督式和非監督式分類技術。書中包含超過190幅插圖,為您提供生理學、數據獲取和數據庫設計的相關基礎知識,並解決改善現有數據分析方法和開發新應用的實際問題。

**目錄:**
前言。
引言 - ECG的生理基礎和臨床解釋介紹。ECG信息獲取、表示和存儲的介紹。用於ECG數據分析的先進信號處理和人工智慧。

ECG及其污染物的數學特徵化 - 噪聲/信號/工件比較,通過穩定性、高斯性、非線性和顏色的度量來特徵化不需要的信號。長期趨勢(晝夜節律、分段、非穩定性變化)。

過濾、壓縮、解壓縮和插值 - 線性和穩定過濾及壓縮、重採樣、插值和小波。多維過濾。非線性投影過濾。

特徵提取 - 從ECG中提取特徵。時間特徵提取ECG衍生的呼吸和心率變異性。

監督式和非監督式分類 - 線性監督學習介紹。監督式神經網絡。支持向量機方法。基於聚類的分析方法。支持模式發現和解釋的非監督學習方法。混合智能分類技術。

可視化方法、知識管理和新興方法 - 顯示ECG信息和分析結果的方法。自動描述和評估ECG數據集群和類別的方法。因果推理介紹。