Wireless Sensor Networks: An Information Processing Approach(亞洲平裝版ISBN-9812592695)
Feng Zhao, Leonidas Guibas
- 出版商: Morgan Kaufmann
- 出版日期: 2004-06-01
- 售價: $3,840
- 貴賓價: 9.5 折 $3,648
- 語言: 英文
- 頁數: 376
- 裝訂: Hardcover
- ISBN: 1558609148
- ISBN-13: 9781558609143
-
相關分類:
感測器 Sensor
下單後立即進貨 (約2~3週)
買這商品的人也買了...
-
$490$417 -
$690$545 -
$755Engineering Electromagnetics, 6/e
-
$590$466 -
$399CCNA ICND Exam Certification Guide (CCNA Self-Study, 640-811, 640-801) (Hardcover)
-
$560$504 -
$850$723 -
$480$379 -
$750$593 -
$780$663 -
$1,900$1,805 -
$590$460 -
$299Enterprise JavaBeans, 4/e (Paperback)
-
$650$553 -
$620$484 -
$760$600 -
$550$495 -
$580$458 -
$690$587 -
$890$703 -
$620$490 -
$540$427 -
$990$782 -
$450$405 -
$1,029Mechanical Engineering Design, 7/e (美國版ISBN:0072921935)
相關主題
商品描述
Description:
Designing, implementing, and operating a wireless sensor network involves a wide range of disciplines and many application-specific constraints. To make sense of and take advantage of these systems, a holistic approach is needed—and this is precisely what Wireless Sensor Networks delivers.
Inside, two eminent researchers review the diverse technologies and techniques that interact in today’s wireless sensor networks. At every step, they are guided by the high-level information-processing tasks that determine how these networks are architected and administered. Zhao and Guibas begin with the canonical problem of localizing and tracking moving objects, then systematically examine the many fundamental sensor network issues that spring from it, including network discovery, service establishment, data routing and aggregation, query processing, programming models, and system organization. The understanding gained as a result—how different layers support the needs of different applications, and how a wireless sensor network should be built to optimize performance and economy—is sure to endure as individual component technologies come and go.
Table of Contents:
1 Introduction
1.1 Unique Constraints and Challenges
1.2 Advantages of Sensor Networks
1.2.1 Energy advantage
1.2.2 Detection advantage
1.3 Sensor Network Applications
1.3.1 Habitat monitoring: wildlife conservation through autonomous, non-intrusive sensing
1.3.2 Tracking chemical plumes: ad hoc, just-in-time deployment mitigating disasters
1.3.3 Smart transportation: networked sensors making roads safer and less congested
1.4 Collaborative Processing
1.5 Key Definitions of Sensor Networks
1.6 The Rest of the Book
2 Canonical Problem: Localization and Tracking
2.1 A Tracking Scenario
2.2 Problem Formulation
2.2.1 Sensing model
2.2.2 Collaborative localization
2.2.3 Bayesian state estimation
2.3 Distributed Representation and Inference of States
2.3.1 Impact of choice of representation
2.3.2 Design desiderata in distributed tracking
2.4 Tracking Multiple Objects
2.4.1 State-space decomposition
2.4.2 Data association
2.5 Sensor Models
2.6 Performance Comparison and Metrics
2.7 Summary
2.8 Appendix A: Optimal Estimator Design
2.9 Appendix B: Particle Filter
3 Networking Sensors
3.1 Key Assumptions
3.2 Medium Access Control
3.2.1 The S-MAC Protocol
3.2.2 IEEE 802.15.4 Standard and ZigBee
3.3 General Issues
3.4 Geographic, Energy-Aware Routing
3.4.1 Unicast Geographic Routing
3.4.2 Routing on a Curve
3.4.3 Energy-Minimizing Broadcast
3.4.4 Energy-Aware Routing to a Region
3.5 Attribute-Based Routing
3.5.1 Directed Diffusion
3.5.2 Rumor Routing
3.5.3 Geographic Hash Tables
3.6 Summary
4 Infrastructure Establishment
4.1 Topology Control
4.2 Clustering
4.3 Time Synchronization
4.3.1 Clocks and Communication Delays
4.3.2 Interval Methods
4.3.3 Reference Broadcasts
4.4 Localization and Localization Services
4.4.1 Ranging Techniques
4.4.2 Range-Based Localization Algorithms
4.4.3 Other Localization Algorithms
4.4.4 Location Services
4.5 Summary
5 Sensor Tasking and Control
5.1 Task-Driven Sensing
5.2 Roles of Sensor Nodes and Utilities
5.3 Information-Based Sensor Tasking
5.3.1 Sensor selection
5.3.2 IDSQ: Information-driven sensor querying
5.3.3 Cluster leader based protocol
5.3.4 Sensor tasking in tracking relations
5.4 Joint Routing and Information Aggregation
5.4.1 Moving center of aggregation
5.4.2 Multi-step information-directed routing
5.4.3 Sensor group management
5.4.4 Case study: sensing global phenomena
5.5 Summary
5.6 Appendix A: Information Utility Measures
5.7 Appendix B: Sample Sensor Selection Criteria
6 Sensor Network Databases
6.1 Sensor Database Challenges
6.2 Querying The Physical Environment
6.3 Query Interfaces
6.3.1 Cougar sensor database and abstract data types
6.3.2 Probabilistic queries
6.4 High-level Database Organization
6.5 In-Network Aggregation
6.5.1 Query propagation and aggregation
6.5.2 TinyDB query processing
6.5.3 Query processing scheduling and optimization
6.6 Data-Centric Storage
6.7 Data Indices and Range Queries
6.7.1 One-dimensional indices
6.7.2 Multi-dimensional indices for orthogonal range searching
6.7.3 Non-orthogonal range searching
6.8 Distributed Hierarchical Aggregation
6.8.1 Multi-resolution summarization
6.8.2 Partitioning the summaries
6.8.3 Fractional cascading
6.8.4 Locality preserving hashing
6.9 Temporal Data
6.9.1 Data aging
6.9.2 Indexing motion data
6.10 Summary
7 Sensor Network Platforms and Tools
7.1 Sensor Network Hardware
7.1.1 Berkeley motes
7.2 Sensor Network Programming Challenges
7.3 Node-Level Software Platforms
7.3.1 Operating system: TinyOS
7.3.2 Imperative language: nesC
7.3.3 Dataflow style language: TinyGALS
7.4 Node-Level Simulators
7.4.1 ns-2 and its sensor network extensions
7.4.2 TOSSIM
7.5 Programming Beyond Individual Nodes: State-centric programming
7.5.1 Collaboration groups
7.5.2 PIECES: A state-centric design framework
7.5.3 Multi-target tracking problem revisited
7.6 Summary
8 Applications and Future Directions
8.1 A Summary of the Book
8.2 Emerging Applications
8.3 Future Research Directions
8.3.1 Secure embedded systems
8.3.2 Programming models and embedded operating systems
8.3.3 Management of collaborative groups
8.3.4 Light-weight signal processing
8.3.5 Networks of high-data-rate sensors
8.3.6 Google for the physical world
8.3.7 Closing the loop with actuators
8.3.8 Distributed information architecture
8.4 Conclusion
商品描述(中文翻譯)
描述:
設計、實施和運營無線感測器網路涉及廣泛的學科和許多特定應用的限制。為了理解並利用這些系統,需要一種整體的方法——這正是無線感測器網路所提供的。內部,兩位著名研究者回顧了當今無線感測器網路中互動的多樣技術和技術。在每一步,他們都受到高層次信息處理任務的指導,這些任務決定了這些網路的架構和管理方式。趙和圭巴斯從定位和追蹤移動物體的經典問題開始,然後系統地檢視由此產生的許多基本感測器網路問題,包括網路發現、服務建立、數據路由和聚合、查詢處理、程式設計模型和系統組織。由此獲得的理解——不同層次如何支持不同應用的需求,以及無線感測器網路應如何構建以優化性能和經濟性——必將隨著各個組件技術的興衰而持久存在。
目錄:
1 引言
1.1 獨特的限制和挑戰
1.2 感測器網路的優勢
1.2.1 能源優勢
1.2.2 偵測優勢
1.3 感測器網路應用
1.3.1 棲息地監測:通過自主、非侵入式感測進行野生動物保護
1.3.2 追蹤化學煙霧:即時、臨時部署以減輕災害
1.3.3 智慧交通:網路感測器使道路更安全且減少擁堵
1.4 協作處理
1.5 感測器網路的關鍵定義
1.6 本書其餘部分
2 經典問題:定位和追蹤
2.1 追蹤場景
2.2 問題表述
2.2.1 感測模型
2.2.2 協作定位
2.2.3 貝葉斯狀態估計
2.3 狀態的分散表示和推斷
2.3.1 表示選擇的影響
2.3.2 分散追蹤中的設計需求
2.4 追蹤多個物體
2.4.1 狀態空間分解
2.4.2 數據關聯
2.5 感測器模型
2.6 性能比較和指標
2.7 總結
2.8 附錄A:最佳估計器設計
2.9 附錄B:粒子濾波器
3 網路感測器
3.1 關鍵假設
3.2 媒介存取控制
3.2.1 S-MAC 協定
3.2.2 IEEE 802.15.4 標準和 ZigBee
3.3 一般問題
3.4 地理、能源感知路由
3.4.1 單播地理路由
3.4.2 曲線上的路由
3.4.3 能源最小化廣播
3.4.4 面向區域的能源感知路由
3.5 基於屬性的路由
3.5.1 定向擴散
3.5.2 謠言路由
3.5.3 地理哈希表
3.6 總結
4 基礎設施建立
4.1 拓撲控制
4.2 聚類
4.3 時間同步
4.3.1 時鐘和通信延遲
4.3.2 區間方法
4.3.3 參考廣播
4.4 定位和定位服務
4.4.1 測距技術
4.4.2 基於範圍的定位演算法
4.4.3 其他定位演算法
4.4.4 位置服務
4.5 總結
5 感測任務和控制
5.1 任務驅動的感測
5.2 感測器節點和公用事業的角色
5.3 基於信息的感測任務
5.3.1 S