Deep Belief Nets in C++ and CUDA C: Volume III: Convolutional Nets (Volume 3) (Paperback)
暫譯: C++ 與 CUDA C 中的深度信念網路:第三卷:卷積網路 (平裝本)
Timothy Masters
- 出版商: CreateSpace Independ
- 出版日期: 2016-04-04
- 售價: $1,950
- 貴賓價: 9.5 折 $1,853
- 語言: 英文
- 頁數: 208
- 裝訂: Paperback
- ISBN: 1530895189
- ISBN-13: 9781530895182
-
相關分類:
C++ 程式語言、CUDA
立即出貨(限量) (庫存=2)
買這商品的人也買了...
-
$580$452 -
$1,960CUDA Fortran for Scientists and Engineers: Best Practices for Efficient CUDA Fortran Programming (Paperback)
-
$850$808 -
$2,050$1,948 -
$360$284 -
$1,850$1,758 -
$969Debugging Teams: Better Productivity through Collaboration (Paperback)
-
$1,840$1,748 -
$1,020$969 -
$590$460 -
$390$308 -
$229進化從孤膽極客到高效團隊 (Debugging Teams Better Productivity through Collaboration)
-
$1,750$1,663 -
$400$316 -
$403游戲服務器架構與優化
-
$301游戲開發者訪談錄
-
$454Redis 4.x Cookbook (中文版)
-
$480$379 -
$199番茄工作法圖解:簡單易行的時間管理方法
-
$680$537 -
$520$411 -
$450$351 -
$520$411 -
$580$458 -
$590$502
商品描述
Deep belief nets are one of the most exciting recent developments in artificial intelligence. The structure of these elegant models is much closer to that of human brains than traditional neural networks; they have a ‘thought process’ that is capable of learning abstract concepts built from simpler primitives. A typical deep belief net can learn to recognize complex patterns by optimizing millions of parameters, yet this model can still be resistant to overfitting. This book presents the essential building blocks of a common and powerful form of deep belief net: convolutional nets. These models are especially useful for image processing applications. At each step the text provides intuitive motivation, a summary of the most important equations relevant to the topic, and concludes with highly commented code for threaded computation on modern CPUs as well as massive parallel processing on computers with CUDA-capable video display cards. Source code for all routines presented in the book, and the executable CONVNET program which implements these algorithms, are available for free download from the author’s website. Source code for the complete CONVNET program is not available, as much of it is highly specialized Windows interface code. Readers are responsible for writing their own main program, with all interface routines. You may freely use all of the core convolutional net routines in this book, as long as you remember that it is experimental code that comes with absolutely no guaranty of correct operation.
商品描述(中文翻譯)
深度信念網絡是人工智慧領域中最近最令人興奮的發展之一。這些優雅模型的結構與人類大腦的結構相比,與傳統神經網絡更為接近;它們擁有一種能夠從更簡單的原始概念中學習抽象概念的「思考過程」。一個典型的深度信念網絡可以通過優化數百萬個參數來學習識別複雜的模式,然而這種模型仍然能夠抵抗過擬合。本書介紹了一種常見且強大的深度信念網絡形式的基本構建塊:卷積網絡(convolutional nets)。這些模型在圖像處理應用中尤其有用。在每一步中,文本提供直觀的動機、與主題相關的最重要方程的摘要,並以高度註解的代碼結束,該代碼適用於現代 CPU 的線程計算以及在具備 CUDA 功能的顯示卡的計算機上進行大規模並行處理。本書中所有例程的源代碼以及實現這些算法的可執行 CONVNET 程序均可從作者的網站免費下載。完整的 CONVNET 程序的源代碼不可用,因為其中許多是高度專業化的 Windows 界面代碼。讀者需自行編寫主程序及所有界面例程。您可以自由使用本書中的所有核心卷積網絡例程,只要您記住這是實驗性代碼,並且完全不保證其正確運行。