BIG DATA ANALYTICS through SAS (透過SAS的大數據分析)

César Pérez

相關主題

商品描述

Big data analytics is the process of examining big data to uncover hidden patterns, unknown correlations and other useful information that can be used to make better decisions. With big data analytics, data scientists and others can analyze huge volumes of data that conventional analytics and business intelligence solutions can't touch. Consider this; it's possible that your organization could accumulate (if it hasn't already) billions of rows of data with hundreds of millions of data combinations in multiple data stores and abundant formats. High-performance analytics is necessary to process that much data in order to figure out what's important and what isn't. Using big data analytics you can extract only the relevant information from terabytes, petabytes and exabytes, and analyze it to transform your business decisions for the future. Becoming proactive with big data analytics isn't a one-time endeavor; it is more of a culture change – a new way of gaining ground by freeing your analysts and decision makers to meet the future with sound knowledge and insight. SAS support for big data implementations, including Hadoop. throught SAS and Hadoop is possible work in all steps of Analytical Process: Identify/formulate Problem, Data Preparation, Data Exploration, Transform and select, Buil Model, Validate model, Deploy Model and Evaluate/Monitor Results. This book presents the work possibilities that SAS offers in the modern sectors of big data, Business Intelligence and Analytics. The most important tools of SAS are presented for processing and analyzing large volumes of data in an orderly manner. In turn, these tools allow also extract the knowledge contained in the data.

商品描述(中文翻譯)

大數據分析是檢視大數據的過程,以揭示隱藏的模式、未知的關聯及其他有用的信息,這些信息可以用來做出更好的決策。透過大數據分析,數據科學家和其他人可以分析傳統分析和商業智慧解決方案無法觸及的龐大數據量。想想看;你的組織可能已經累積了數十億行數據,並在多個數據存儲和豐富的格式中擁有數億種數據組合。高效能的分析對於處理如此大量的數據是必要的,以便找出重要的和不重要的資訊。

使用大數據分析,你可以從數TB、數PB和數EB的數據中提取出相關的信息,並進行分析,以改變未來的商業決策。主動運用大數據分析並不是一次性的努力;這更像是一種文化變革——一種通過釋放你的分析師和決策者,以扎實的知識和洞察力迎接未來的新方式。

SAS對於大數據實施的支持,包括Hadoop,能夠在分析過程的所有步驟中發揮作用:識別/制定問題、數據準備、數據探索、轉換和選擇、建立模型、驗證模型、部署模型以及評估/監控結果。本書介紹了SAS在現代大數據、商業智慧和分析領域所提供的工作可能性。SAS的最重要工具被介紹用於有序地處理和分析大量數據。這些工具同時也能提取數據中所包含的知識。