BIG DATA. SAS Tools
暫譯: 大數據:SAS 工具

James Braselton

  • 出版商: CreateSpace Independ
  • 出版日期: 2014-08-14
  • 售價: $1,190
  • 貴賓價: 9.5$1,131
  • 語言: 英文
  • 頁數: 164
  • 裝訂: Paperback
  • ISBN: 1500834041
  • ISBN-13: 9781500834043
  • 相關分類: 大數據 Big-data
  • 無法訂購

商品描述

People and organizations have attempted to tackle the problem to analyze massive volumes of data from many different angles. SAS uses multicore technologies to deliver increased processing capabilities through high-performance, in-database and in-memory analytics resulting in greater insights more quickly from big data and streaming data. Important foundational updates allow you to deploy SAS in the manner that best suits your needs. The angle that is currently leading the pack in terms of popularity for massive data analysis is an open source project called Hadoop. Hadoop is also shipped as part of SAS tools. SAS incorporated Hadoop into their applications (SAS Base, SAS Data Integration, Sas Enterpris Guide, SAS Enterprise Miner, …). Same SAS aplications works in-memory on Hadoop (In-memory Statistics, SAS Visual Analytics and SAS Visual Statistics). SAS support for big data implementations, including Hadoop, centers on a singular goal – helping you know more, faster, so you can make better decisions. Regardless of how you use the technology, every project should go through an iterative and continuous improvement cycle. And that includes data preparation and management, data visualization and exploration, model development, model deployment and monitoring. Also throught SAS and Hadoop is possible work in all steps of Analytical Process: Identify/formulate Problem, Data Preparation, Data Exploration, Transform and select, Buil Model, Validate model, Deploy Model and Evaluate/Monitor Results. This book presents the work possibilities that SAS offers in the modern sector of big data. The most important tools of SAS are presented for processing and analyzing large volumes of data in an orderly manner. In turn, these tools allow also extract the knowledge contained in the data.

商品描述(中文翻譯)

人們和組織試圖從多個角度解決分析大量數據的問題。SAS 使用多核心技術來提供增強的處理能力,透過高效能的內建數據庫和內存分析,從大數據和串流數據中更快速地獲得更深入的見解。重要的基礎更新使您能夠以最適合您需求的方式部署 SAS。目前在大數據分析中最受歡迎的角度是一個名為 Hadoop 的開源專案。Hadoop 也作為 SAS 工具的一部分進行發佈。SAS 將 Hadoop 整合到他們的應用程式中(SAS Base、SAS Data Integration、SAS Enterprise Guide、SAS Enterprise Miner 等)。相同的 SAS 應用程式在 Hadoop 上以內存方式運行(內存統計、SAS Visual Analytics 和 SAS Visual Statistics)。SAS 對大數據實作的支持,包括 Hadoop,集中於一個單一目標——幫助您更快地了解更多,以便做出更好的決策。無論您如何使用這項技術,每個專案都應經歷一個迭代和持續改進的循環。這包括數據準備和管理、數據可視化和探索、模型開發、模型部署和監控。此外,透過 SAS 和 Hadoop,您可以在分析過程的所有步驟中工作:識別/制定問題、數據準備、數據探索、轉換和選擇、建立模型、驗證模型、部署模型和評估/監控結果。本書介紹了 SAS 在現代大數據領域提供的工作可能性。SAS 的最重要工具以有序的方式呈現,用於處理和分析大量數據。反過來,這些工具也能提取數據中所包含的知識。