Model-Based Machine Learning
Winn, John
- 出版商: CRC
- 出版日期: 2023-10-26
- 售價: $3,460
- 貴賓價: 9.5 折 $3,287
- 語言: 英文
- 頁數: 455
- 裝訂: Hardcover - also called cloth, retail trade, or trade
- ISBN: 1498756816
- ISBN-13: 9781498756815
-
相關分類:
Machine Learning
海外代購書籍(需單獨結帳)
相關主題
商品描述
Today, machine learning is being applied to a growing variety of problems in a bewildering variety of domains. A fundamental challenge when using machine learning is connecting the abstract mathematics of a machine learning technique to a concrete, real world problem. This book tackles this challenge through model-based machine learning which focuses on understanding the assumptions encoded in a machine learning system and their corresponding impact on the behaviour of the system.
The key ideas of model-based machine learning are introduced through a series of case studies involving real-world applications. Case studies play a central role because it is only in the context of applications that it makes sense to discuss modelling assumptions. Each chapter introduces one case study and works through step-by-step to solve it using a model-based approach. The aim is not just to explain machine learning methods, but also showcase how to create, debug, and evolve them to solve a problem.
Features:
- Explores the assumptions being made by machine learning systems and the effect these assumptions have when the system is applied to concrete problems.
- Explains machine learning concepts as they arise in real-world case studies.
- Shows how to diagnose, understand and address problems with machine learning systems.
- Full source code available, allowing models and results to be reproduced and explored.
- Includes optional deep-dive sections with more mathematical details on inference algorithms for the interested reader.
商品描述(中文翻譯)
如今,機器學習正被應用於越來越多領域的各種問題。在使用機器學習時,一個基本的挑戰是將機器學習技術的抽象數學與具體的現實世界問題相連接。本書通過「基於模型的機器學習」來應對這一挑戰,該方法著重於理解機器學習系統中所編碼的假設以及這些假設對系統行為的影響。
本書通過一系列涉及真實應用的案例研究介紹了基於模型的機器學習的關鍵思想。案例研究在其中扮演著核心角色,因為只有在應用的情境下,討論建模假設才有意義。每一章都介紹一個案例研究,並逐步使用基於模型的方法來解決問題。我們的目標不僅是解釋機器學習方法,還展示如何創建、調試和演進這些方法以解決問題。
特點:
- 探索機器學習系統所做的假設以及這些假設對具體問題應用時的影響。
- 在真實案例研究中介紹機器學習概念。
- 展示如何診斷、理解和解決機器學習系統的問題。
- 提供完整的源代碼,可重現和探索模型和結果。
- 包含可選的深入部分,提供更多關於推理算法的數學細節,以滿足感興趣的讀者需求。
作者簡介
John Winn is a Principal Researcher at Microsoft Research, UK.
作者簡介(中文翻譯)
John Winn 是英國微軟研究院的首席研究員。