Swarm Intelligence: Principles, Advances, and Applications
暫譯: 群體智慧:原則、進展與應用
Aboul Ella Hassanien, Eid Emary
- 出版商: CRC
- 出版日期: 2015-11-24
- 售價: $4,430
- 貴賓價: 9.5 折 $4,209
- 語言: 英文
- 頁數: 228
- 裝訂: Hardcover
- ISBN: 1498741061
- ISBN-13: 9781498741064
-
相關分類:
ARM
-
其他版本:
Swarm Intelligence: Principles, Advances, and Applications
海外代購書籍(需單獨結帳)
商品描述
Swarm Intelligence: Principles, Advances, and Applications delivers in-depth coverage of bat, artificial fish swarm, firefly, cuckoo search, flower pollination, artificial bee colony, wolf search, and gray wolf optimization algorithms. The book begins with a brief introduction to mathematical optimization, addressing basic concepts related to swarm intelligence, such as randomness, random walks, and chaos theory. The text then:
- Describes the various swarm intelligence optimization methods, standardizing the variants, hybridizations, and algorithms whenever possible
- Discusses variants that focus more on binary, discrete, constrained, adaptive, and chaotic versions of the swarm optimizers
- Depicts real-world applications of the individual optimizers, emphasizing variable selection and fitness function design
- Details the similarities, differences, weaknesses, and strengths of each swarm optimization method
- Draws parallels between the operators and searching manners of the different algorithms
Swarm Intelligence: Principles, Advances, and Applications presents a comprehensive treatment of modern swarm intelligence optimization methods, complete with illustrative examples and an extendable MATLAB® package for feature selection in wrapper mode applied on different data sets with benchmarking using different evaluation criteria. The book provides beginners with a solid foundation of swarm intelligence fundamentals, and offers experts valuable insight into new directions and hybridizations.
商品描述(中文翻譯)
群體智慧:原則、進展與應用深入探討了蝙蝠、人工魚群、螢火蟲、杜鵑搜尋、花朵授粉、人工蜜蜂群、狼搜尋和灰狼優化演算法。本書首先簡要介紹數學優化,涵蓋與群體智慧相關的基本概念,如隨機性、隨機漫步和混沌理論。接著,文本內容包括:
- 描述各種群體智慧優化方法,盡可能標準化變體、混合和演算法
- 討論更專注於二元、離散、受限、自適應和混沌版本的群體優化器變體
- 描繪各個優化器的實際應用,強調變數選擇和適應度函數設計
- 詳細說明每種群體優化方法的相似性、差異、弱點和優勢
- 將不同演算法的運算子和搜尋方式進行比較
群體智慧:原則、進展與應用全面介紹了現代群體智慧優化方法,並附有示例和可擴展的 MATLAB® 套件,用於在不同數據集上以包裝模式進行特徵選擇,並使用不同的評估標準進行基準測試。本書為初學者提供了群體智慧基礎的堅實基礎,並為專家提供了對新方向和混合化的寶貴見解。