Large-Scale Machine Learning in the Earth Sciences (Chapman & Hall/CRC Data Mining and Knowledge Discovery Series)

  • 出版商: Chapman and Hall/CRC
  • 出版日期: 2017-08-07
  • 售價: $5,760
  • 貴賓價: 9.5$5,472
  • 語言: 英文
  • 頁數: 226
  • 裝訂: Hardcover
  • ISBN: 1498703879
  • ISBN-13: 9781498703871
  • 相關分類: Machine LearningData-mining
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

From the Foreword:

"While large-scale machine learning and data mining have greatly impacted a range of commercial applications, their use in the field of Earth sciences is still in the early stages. This book, edited by Ashok

Srivastava, Ramakrishna Nemani, and Karsten Steinhaeuser, serves as an outstanding resource for anyone interested in the opportunities and challenges for the machine learning community in analyzing these data sets to answer questions of urgent societal interest…I hope that this book will inspire more computer scientists to focus on environmental applications, and Earth scientists to seek collaborations with researchers in machine learning and data mining to advance the frontiers in Earth sciences."

--Vipin Kumar, University of Minnesota

Large-Scale Machine Learning in the Earth Sciences provides researchers and practitioners with a broad overview of some of the key challenges in the intersection of Earth science, computer science, statistics, and related fields. It explores a wide range of topics and provides a compilation of recent research in the application of machine learning in the field of Earth Science.

Making predictions based on observational data is a theme of the book, and the book includes chapters on the use of network science to understand and discover teleconnections in extreme climate and weather events, as well as using structured estimation in high dimensions. The use of ensemble machine learning models to combine predictions of global climate models using information from spatial and temporal patterns is also explored.

The second part of the book features a discussion on statistical downscaling in climate with state-of-the-art scalable machine learning, as well as an overview of methods to understand and predict the proliferation of biological species due to changes in environmental conditions. The problem of using large-scale machine learning to study the formation of tornadoes is also explored in depth.

The last part of the book covers the use of deep learning algorithms to classify images that have very high resolution, as well as the unmixing of spectral signals in remote sensing images of land cover. The authors also apply long-tail distributions to geoscience resources, in the final chapter of the book.

商品描述(中文翻譯)

前言:

「雖然大規模機器學習和資料挖掘對多種商業應用產生了重大影響,但它們在地球科學領域的應用仍處於早期階段。本書由 Ashok Srivastava、Ramakrishna Nemani 和 Karsten Steinhaeuser 編輯,是任何對機器學習社群在分析這些數據集以回答緊迫社會問題的機會和挑戰感興趣的人的卓越資源……我希望這本書能激勵更多的計算機科學家專注於環境應用,並促使地球科學家尋求與機器學習和資料挖掘研究人員的合作,以推進地球科學的前沿。」

--Vipin Kumar,明尼蘇達大學

《地球科學中的大規模機器學習》為研究人員和實務工作者提供了地球科學、計算機科學、統計學及相關領域交集中的一些關鍵挑戰的廣泛概述。它探討了多種主題,並提供了機器學習在地球科學領域應用的最新研究彙編。

根據觀測數據進行預測是本書的一個主題,書中包括了使用網絡科學來理解和發現極端氣候和天氣事件中的遠程連結的章節,以及在高維度中使用結構估計的內容。書中還探討了使用集成機器學習模型來結合全球氣候模型的預測,利用空間和時間模式中的信息。

本書的第二部分討論了氣候中的統計降尺度,採用最先進的可擴展機器學習,並概述了理解和預測由於環境條件變化而導致的生物物種擴散的方法。書中還深入探討了使用大規模機器學習研究龍捲風形成的問題。

本書的最後一部分涵蓋了使用深度學習算法對具有非常高解析度的影像進行分類,以及在土地覆蓋的遙感影像中進行光譜信號的解混。作者在書的最後一章中還將長尾分佈應用於地球科學資源。