Dynamic Data Analysis: Modeling Data with Differential Equations (Springer Series in Statistics)
暫譯: 動態數據分析:用微分方程建模數據(施普林格統計系列)
James Ramsay, Giles Hooker
- 出版商: Springer
- 出版日期: 2017-06-28
- 售價: $6,780
- 貴賓價: 9.5 折 $6,441
- 語言: 英文
- 頁數: 230
- 裝訂: Hardcover
- ISBN: 1493971883
- ISBN-13: 9781493971886
-
相關分類:
Data Science、機率統計學 Probability-and-statistics
海外代購書籍(需單獨結帳)
相關主題
商品描述
This text focuses on the use of smoothing methods for developing and estimating differential equations following recent developments in functional data analysis and building on techniques described in Ramsay and Silverman (2005) Functional Data Analysis. The central concept of a dynamical system as a buffer that translates sudden changes in input into smooth controlled output responses has led to applications of previously analyzed data, opening up entirely new opportunities for dynamical systems. The technical level has been kept low so that those with little or no exposure to differential equations as modeling objects can be brought into this data analysis landscape. There are already many texts on the mathematical properties of ordinary differential equations, or dynamic models, and there is a large literature distributed over many fields on models for real world processes consisting of differential equations. However, a researcher interested in fitting such a model to data, or a statistician interested in the properties of differential equations estimated from data will find rather less to work with. This book fills that gap.
商品描述(中文翻譯)
本書專注於平滑方法在發展和估計微分方程中的應用,基於最近在功能數據分析中的發展,並建立在 Ramsay 和 Silverman (2005) 的著作《功能數據分析》中所描述的技術之上。動態系統作為一種緩衝器的核心概念,能將輸入的突變轉化為平滑的受控輸出反應,這一點促進了對先前分析數據的應用,為動態系統開啟了全新的機會。技術層面保持在較低水平,以便那些對微分方程作為建模對象幾乎沒有接觸的人也能進入這一數據分析的領域。目前已有許多關於常微分方程或動態模型的數學性質的文獻,並且在許多領域中,針對由微分方程組成的現實世界過程的模型也有大量文獻。然而,對於希望將此類模型擬合到數據中的研究者,或對從數據中估計的微分方程性質感興趣的統計學家來說,能夠參考的資料則相對較少。本書填補了這一空白。