BONUS Algorithm for Large Scale Stochastic Nonlinear Programming Problems (SpringerBriefs in Optimization)
Urmila Diwekar, Amy David
- 出版商: Springer
- 出版日期: 2015-03-06
- 售價: $2,380
- 貴賓價: 9.5 折 $2,261
- 語言: 英文
- 頁數: 146
- 裝訂: Paperback
- ISBN: 1493922815
- ISBN-13: 9781493922819
-
相關分類:
R 語言、Algorithms-data-structures
海外代購書籍(需單獨結帳)
相關主題
商品描述
This book presents the details of the BONUS algorithm and its real world applications in areas like sensor placement in large scale drinking water networks, sensor placement in advanced power systems, water management in power systems, and capacity expansion of energy systems. A generalized method for stochastic nonlinear programming based on a sampling based approach for uncertainty analysis and statistical reweighting to obtain probability information is demonstrated in this book. Stochastic optimization problems are difficult to solve since they involve dealing with optimization and uncertainty loops. There are two fundamental approaches used to solve such problems. The first being the decomposition techniques and the second method identifies problem specific structures and transforms the problem into a deterministic nonlinear programming problem. These techniques have significant limitations on either the objective function type or the underlying distributions for the uncertain variables. Moreover, these methods assume that there are a small number of scenarios to be evaluated for calculation of the probabilistic objective function and constraints. This book begins to tackle these issues by describing a generalized method for stochastic nonlinear programming problems. This title is best suited for practitioners, researchers and students in engineering, operations research, and management science who desire a complete understanding of the BONUS algorithm and its applications to the real world.
商品描述(中文翻譯)
本書介紹了BONUS算法的細節以及其在實際應用中的應用領域,如大型飲用水網絡中的傳感器佈置、先進電力系統中的傳感器佈置、電力系統中的水管理以及能源系統的容量擴展。本書演示了一種基於採樣方法的隨機非線性規劃的通用方法,用於不確定性分析和統計重新加權以獲取概率信息。隨機優化問題很難解決,因為它們涉及優化和不確定性迴圈。解決這類問題有兩種基本方法。第一種是分解技術,第二種方法是識別問題特定的結構並將問題轉化為確定性非線性規劃問題。這些技術對於目標函數類型或不確定變量的基礎分佈都有顯著的限制。此外,這些方法假設需要評估的情景數量很少,以計算概率目標函數和約束條件。本書開始解決這些問題,描述了一種用於隨機非線性規劃問題的通用方法。本書最適合工程、運營研究和管理科學領域的從業人員、研究人員和學生,他們希望全面了解BONUS算法及其在實際應用中的應用。