Recommender Systems for Location-based Social Networks (SpringerBriefs in Electrical and Computer Engineering)
暫譯: 基於位置的社交網絡推薦系統(電機與計算機工程系列簡報)
Panagiotis Symeonidis, Dimitrios Ntempos, Yannis Manolopoulos
相關主題
商品描述
Online social networks collect information from users' social contacts and their daily interactions (co-tagging of photos, co-rating of products etc.) to provide them with recommendations of new products or friends. Lately, technological progressions in mobile devices (i.e. smart phones) enabled the incorporation of geo-location data in the traditional web-based online social networks, bringing the new era of Social and Mobile Web. The goal of this book is to bring together important research in a new family of recommender systems aimed at serving Location-based Social Networks (LBSNs). The chapters introduce a wide variety of recent approaches, from the most basic to the state-of-the-art, for providing recommendations in LBSNs.
The book is organized into three parts. Part 1 provides introductory material on recommender systems, online social networks and LBSNs. Part 2 presents a wide variety of recommendation algorithms, ranging from basic to cutting edge, as well as a comparison of the characteristics of these recommender systems. Part 3 provides a step-by-step case study on the technical aspects of deploying and evaluating a real-world LBSN, which provides location, activity and friend recommendations. The material covered in the book is intended for graduate students, teachers, researchers, and practitioners in the areas of web data mining, information retrieval, and machine learning.
商品描述(中文翻譯)
在線社交網絡從用戶的社交聯繫和日常互動(例如共同標記照片、共同評價產品等)中收集信息,以向他們提供新產品或朋友的推薦。最近,移動設備(即智能手機)的技術進步使得在傳統的基於網絡的在線社交網絡中整合地理位置數據成為可能,開創了社交和移動網絡的新時代。本書的目標是匯集針對基於位置的社交網絡(LBSNs)服務的重要推薦系統研究。各章節介紹了從最基本到最先進的各種最近方法,以提供LBSNs中的推薦。
本書分為三個部分。第一部分提供有關推薦系統、在線社交網絡和LBSNs的入門材料。第二部分介紹了各種推薦算法,從基本到尖端,並比較這些推薦系統的特徵。第三部分提供了一個逐步的案例研究,探討部署和評估現實世界LBSN的技術方面,該系統提供位置、活動和朋友的推薦。本書涵蓋的材料旨在為研究生、教師、研究人員以及網絡數據挖掘、信息檢索和機器學習領域的從業者提供參考。