Building Recommendation Systems in Python and Jax: Hands-On Production Systems at Scale
暫譯: 在 Python 和 Jax 中構建推薦系統:大規模實作系統的實務操作
Bischof, Bryan, Yee, Hector
買這商品的人也買了...
相關主題
商品描述
Implementing and designing systems that make suggestions to users are among the most popular and essential machine learning applications available. Whether you want customers to find the most appealing items at your online store, videos to enrich and entertain them, or news they need to know, recommendation systems (RecSys) provide the way.
In this practical book, authors Bryan Bischof and Hector Yee illustrate the core concepts and examples to help you create a RecSys for any industry or scale. You'll learn the math, ideas, and implementation details you need to succeed. This book includes the RecSys platform components, relevant MLOps tools in your stack, plus code examples and helpful suggestions in PySpark, SparkSQL, FastAPI, Weights & Biases, and Kafka.
You'll learn:
- The data essential for building a RecSys
- How to frame your data and business as a RecSys problem
- Ways to evaluate models appropriate for your system
- Methods to implement, train, test, and deploy the model you choose
- Metrics you need to track to ensure your system is working as planned
- How to improve your system as you learn more about your users, products, and business case
商品描述(中文翻譯)
實現和設計能夠向用戶提供建議的系統是當前最受歡迎且至關重要的機器學習應用之一。無論您希望客戶在您的網上商店中找到最吸引人的商品、觀看能夠豐富和娛樂他們的視頻,還是獲取他們需要了解的新聞,推薦系統(RecSys)都能提供解決方案。
在這本實用的書籍中,作者 Bryan Bischof 和 Hector Yee 說明了核心概念和範例,幫助您為任何行業或規模創建一個 RecSys。您將學習成功所需的數學、理念和實現細節。本書包括 RecSys 平台組件、您技術堆疊中相關的 MLOps 工具,以及在 PySpark、SparkSQL、FastAPI、Weights & Biases 和 Kafka 中的代碼範例和有用建議。
您將學習到:
- 建立 RecSys 所需的數據
- 如何將您的數據和業務框架化為 RecSys 問題
- 評估適合您系統的模型的方法
- 實現、訓練、測試和部署您選擇的模型的方法
- 您需要追蹤的指標,以確保系統按計劃運行
- 隨著您對用戶、產品和業務案例的了解加深,如何改進您的系統