Probabilistic Machine Learning for Finance and Investing: A Primer to Generative AI with Python
暫譯: 金融與投資的機率機器學習:使用 Python 的生成式 AI 入門指南

Kanungo, Deepak K.

  • 出版商: O'Reilly
  • 出版日期: 2023-09-19
  • 定價: $2,780
  • 售價: 8.8$2,446
  • 語言: 英文
  • 頁數: 264
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 1492097675
  • ISBN-13: 9781492097679
  • 相關分類: Python程式語言人工智慧Machine Learning
  • 立即出貨 (庫存 < 4)

買這商品的人也買了...

相關主題

商品描述

Whether based on academic theories or discovered empirically by humans and machines, all financial models are at the mercy of modeling errors that can be mitigated but not eliminated. Probabilistic ML technologies are based on a simple and intuitive definition of probability and the rigorous calculus of probability theory.

Unlike conventional AI systems, probabilistic machine learning (ML) systems treat errors and uncertainties as features, not bugs. They quantify uncertainty generated from inexact model inputs and outputs as probability distributions, not point estimates. Most importantly, these systems are capable of forewarning us when their inferences and predictions are no longer useful in the current market environment. These ML systems provide realistic support for financial decision-making and risk management in the face of uncertainty and incomplete information.

Probabilistic ML is the next generation ML framework and technology for AI-powered financial and investing systems for many reasons. They are generative ensembles that learn continually from small and noisy financial datasets while seamlessly enabling probabilistic inference, prediction and counterfactual reasoning. By moving away from flawed statistical methodologies (and a restrictive conventional view of probability as a limiting frequency), you can embrace an intuitive view of probability as logic within an axiomatic statistical framework that comprehensively and successfully quantifies uncertainty. This book shows you why and how to make that transition.

商品描述(中文翻譯)

無論是基於學術理論還是由人類和機器經驗發現的,所有金融模型都受到建模錯誤的影響,這些錯誤可以減輕但無法消除。概率機器學習(ML)技術基於概率的簡單直觀定義和概率理論的嚴謹微積分。

與傳統的人工智慧系統不同,概率機器學習系統將錯誤和不確定性視為特徵,而非缺陷。它們將由不精確的模型輸入和輸出產生的不確定性量化為概率分佈,而不是點估計。最重要的是,這些系統能夠在其推論和預測在當前市場環境中不再有用時提前警告我們。這些機器學習系統在面對不確定性和不完整信息時,為金融決策和風險管理提供現實的支持。

概率機器學習是下一代的機器學習框架和技術,適用於許多基於人工智慧的金融和投資系統。它們是生成式集成模型,能夠持續從小型和嘈雜的金融數據集中學習,同時無縫地實現概率推理、預測和反事實推理。通過擺脫有缺陷的統計方法(以及將概率視為限制頻率的傳統觀點),您可以接受概率作為邏輯的直觀觀點,這在一個公理化的統計框架內全面且成功地量化不確定性。本書將向您展示為什麼以及如何進行這一轉變。