Data Pipelines Pocket Reference: Moving and Processing Data for Analytics
暫譯: 數據管道口袋參考:數據移動與處理以進行分析
Densmore, James
- 出版商: O'Reilly
- 出版日期: 2021-03-16
- 定價: $1,150
- 售價: 9.5 折 $1,093
- 語言: 英文
- 頁數: 276
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1492087831
- ISBN-13: 9781492087830
-
相關分類:
大數據 Big-data、Data Science、Machine Learning
立即出貨 (庫存 < 4)
買這商品的人也買了...
-
$450$356 -
$301自然語言處理技術入門與實戰
-
$1,300$1,235 -
$580$452 -
$352Kudu:構建高性能實時數據分析存儲系統
-
$580$493 -
$680$537 -
$301MySQL 性能優化和高可用架構實踐
-
$505數據庫高效優化 : 架構、規範與 SQL 技巧
-
$594$564 -
$980$774 -
$980$774 -
$580$458 -
$580$406 -
$399$379 -
$880$695 -
$680$476
相關主題
商品描述
Data pipelines are the foundation for success in data analytics and machine learning. Moving data from many diverse sources and processing it to provide context is the difference between having data and actually gaining value from it. This pocket reference defines data pipelines and explains how they work in today's modern data stack.
You'll learn common considerations and key decision points when implementing pipelines, such as data pipeline design patterns, data ingestion implementation, data transformation, the orchestration of pipelines, and build versus buy decision making. This book addresses the most common decisions made by data professionals and discusses foundational concepts that apply to open source frameworks, commercial products, and homegrown solutions.
You'll learn:
- What a data pipeline is and how it works
- How data is moved and processed on modern data infrastructure, including cloud platforms
- Common tools and products used by data engineers to build pipelines
- How pipelines support machine learning and analytics needs
- Considerations for pipeline maintenance, testing, and alerting
商品描述(中文翻譯)
資料管道是數據分析和機器學習成功的基礎。將數據從多個不同來源移動並進行處理,以提供上下文,這是擁有數據與實際從中獲取價值之間的區別。本口袋參考手冊定義了資料管道並解釋了它們在當今現代數據堆疊中的運作方式。
您將學習在實施管道時的常見考量和關鍵決策點,例如資料管道設計模式、數據攝取實作、數據轉換、管道的協調,以及自建與購買的決策。本書針對數據專業人員所做的最常見決策進行探討,並討論適用於開源框架、商業產品和自家解決方案的基礎概念。
您將學習:
- 資料管道是什麼以及它是如何運作的
- 數據如何在現代數據基礎設施上移動和處理,包括雲平台
- 數據工程師用來構建管道的常見工具和產品
- 管道如何支持機器學習和分析需求
- 管道維護、測試和警報的考量事項
作者簡介
James is the Director of Data Infrastructure at HubSpot as well as the founder and Principal Consultant at Data Liftoff. He has more than 10 years of experience leading data teams and building data infrastructure at Wayfair, O'Reilly Media, and Degreed. James has a BS in Computer Science from Northeastern University and an MBA from Boston College.
作者簡介(中文翻譯)
詹姆斯是 HubSpot 的數據基礎設施總監,同時也是 Data Liftoff 的創始人和首席顧問。他擁有超過 10 年的經驗,曾在 Wayfair、O'Reilly Media 和 Degreed 領導數據團隊並建立數據基礎設施。詹姆斯擁有東北大學的計算機科學學士學位以及波士頓學院的工商管理碩士學位。