Mastering Kafka Streams and Ksqldb: Building Real-Time Data Systems by Example
暫譯: 精通 Kafka Streams 與 KsqlDB:透過範例構建即時數據系統
Seymour, Mitch
- 出版商: O'Reilly
- 出版日期: 2021-03-16
- 定價: $2,600
- 售價: 9.5 折 $2,470
- 語言: 英文
- 頁數: 432
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1492062499
- ISBN-13: 9781492062493
-
相關分類:
Message Queue、SQL
立即出貨 (庫存 < 3)
買這商品的人也買了...
-
$360$281 -
$940$700 -
$980$774 -
$980$774 -
$419$398 -
$580$458 -
$450$356 -
$1,950$1,911 -
$474$450 -
$450$356 -
$336$319 -
$454再也不踩坑的 kubernetes 實戰指南
-
$680$537 -
$520$411 -
$704Kubernetes 生產化實踐之路
-
$450$356 -
$1,758Learning Helm: Managing Apps on Kubernetes
-
$540$427 -
$1,300$1,235 -
$500$390 -
$297CKA/CKAD 應試指南 : 從 Docker 到 Kubernetes 完全攻略
-
$704深入理解 Kafka 與 Pulsar:消息流平臺的實踐與剖析
-
$560$437 -
$539$512 -
$480$379
商品描述
Working with unbounded and fast-moving data streams has historically been difficult. But with Kafka Streams and ksqlDB, building stream processing applications is easy and fun. This practical guide shows data engineers how to use these tools to build highly scalable stream processing applications for moving, enriching, and transforming large amounts of data in real time.
Mitch Seymour, senior data systems engineer at Mailchimp, explains important stream processing concepts against a backdrop of several interesting business problems. You'll learn the strengths of both Kafka Streams and ksqlDB to help you choose the best tool for each unique stream processing project. Non-Java developers will find the ksqlDB path to be an especially gentle introduction to stream processing.
- Learn the basics of Kafka and the pub/sub communication pattern
- Build stateless and stateful stream processing applications using Kafka Streams and ksqlDB
- Perform advanced stateful operations, including windowed joins and aggregations
- Understand how stateful processing works under the hood
- Learn about ksqlDB's data integration features, powered by Kafka Connect
- Work with different types of collections in ksqlDB and perform push and pull queries
- Deploy your Kafka Streams and ksqlDB applications to production
商品描述(中文翻譯)
處理無界限且快速變化的數據流歷來是個挑戰。然而,使用 Kafka Streams 和 ksqlDB,構建流處理應用程式變得簡單且有趣。本實用指南向數據工程師展示如何使用這些工具來構建高度可擴展的流處理應用程式,以實時移動、豐富和轉換大量數據。
Mailchimp 的資深數據系統工程師 Mitch Seymour 解釋了重要的流處理概念,並以幾個有趣的商業問題為背景。您將學習到 Kafka Streams 和 ksqlDB 的優勢,幫助您為每個獨特的流處理專案選擇最佳工具。非 Java 開發者會發現 ksqlDB 的學習曲線特別平緩,是流處理的溫和入門。
- 學習 Kafka 的基本概念及發布/訂閱(pub/sub)通信模式
- 使用 Kafka Streams 和 ksqlDB 構建無狀態和有狀態的流處理應用程式
- 執行進階的有狀態操作,包括窗口連接和聚合
- 了解有狀態處理的內部運作
- 了解 ksqlDB 的數據整合功能,這是由 Kafka Connect 提供支持
- 在 ksqlDB 中處理不同類型的集合並執行推送和拉取查詢
- 將您的 Kafka Streams 和 ksqlDB 應用程式部署到生產環境
作者簡介
Mitch Seymour is a Senior Data Systems Engineer at Mailchimp. Using Kafka Streams and KSQL, he has built several stream processing applications that process billions of events per day with sub-second latency. He is active in the open source community, has presented about stream processing technologies at international conferences (Kafka Summit London, 2019), speaks about Kafka Streams and KSQL at local meetups, and is a contributor to the Confluent blog.
作者簡介(中文翻譯)
Mitch Seymour 是 Mailchimp 的資深數據系統工程師。他使用 Kafka Streams 和 KSQL 建立了幾個流處理應用程式,每天處理數十億個事件,延遲時間低於一秒。他活躍於開源社群,曾在國際會議(如 2019 年的 Kafka Summit London)上介紹流處理技術,並在當地的聚會中講解 Kafka Streams 和 KSQL,還是 Confluent 部落格的貢獻者。