Mastering Kafka Streams and Ksqldb: Building Real-Time Data Systems by Example
Seymour, Mitch
- 出版商: O'Reilly
- 出版日期: 2021-03-16
- 定價: $2,600
- 售價: 9.5 折 $2,470
- 貴賓價: 9.0 折 $2,340
- 語言: 英文
- 頁數: 432
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1492062499
- ISBN-13: 9781492062493
-
相關分類:
Message Queue、SQL
立即出貨 (庫存 < 3)
買這商品的人也買了...
-
$360$281 -
$940$700 -
$980$774 -
$980$735 -
$419$398 -
$580$458 -
$450$356 -
$1,950$1,911 -
$403Redis 深度歷險:核心原理與應用實踐
-
$450$356 -
$286虛擬化與網絡存儲技術
-
$454再也不踩坑的 kubernetes 實戰指南
-
$680$537 -
$520$411 -
$704Kubernetes 生產化實踐之路
-
$450$356 -
$1,758$1,665 -
$540$427 -
$1,270$1,207 -
$500$390 -
$297CKA/CKAD 應試指南 : 從 Docker 到 Kubernetes 完全攻略
-
$828$787 -
$560$437 -
$539$512 -
$480$360
相關主題
商品描述
Working with unbounded and fast-moving data streams has historically been difficult. But with Kafka Streams and ksqlDB, building stream processing applications is easy and fun. This practical guide shows data engineers how to use these tools to build highly scalable stream processing applications for moving, enriching, and transforming large amounts of data in real time.
Mitch Seymour, senior data systems engineer at Mailchimp, explains important stream processing concepts against a backdrop of several interesting business problems. You'll learn the strengths of both Kafka Streams and ksqlDB to help you choose the best tool for each unique stream processing project. Non-Java developers will find the ksqlDB path to be an especially gentle introduction to stream processing.
- Learn the basics of Kafka and the pub/sub communication pattern
- Build stateless and stateful stream processing applications using Kafka Streams and ksqlDB
- Perform advanced stateful operations, including windowed joins and aggregations
- Understand how stateful processing works under the hood
- Learn about ksqlDB's data integration features, powered by Kafka Connect
- Work with different types of collections in ksqlDB and perform push and pull queries
- Deploy your Kafka Streams and ksqlDB applications to production
商品描述(中文翻譯)
使用無界且快速移動的數據流在歷史上一直是困難的。但是有了Kafka Streams和ksqlDB,構建流處理應用程序變得簡單而有趣。這本實用指南向數據工程師展示如何使用這些工具在實時中移動、豐富和轉換大量數據的過程中構建高度可擴展的流處理應用程序。
Mailchimp的高級數據系統工程師Mitch Seymour在幾個有趣的業務問題的背景下解釋了重要的流處理概念。您將學習Kafka Streams和ksqlDB的優勢,以幫助您為每個獨特的流處理項目選擇最佳工具。非Java開發人員將發現ksqlDB的路徑對於流處理的入門特別友好。
- 學習Kafka的基礎知識和發布/訂閱通信模式
- 使用Kafka Streams和ksqlDB構建無狀態和有狀態的流處理應用程序
- 執行高級有狀態操作,包括窗口連接和聚合
- 了解有狀態處理的內部運作原理
- 了解由Kafka Connect提供支持的ksqlDB的數據集成功能
- 在ksqlDB中使用不同類型的集合並執行推送和拉取查詢
- 將您的Kafka Streams和ksqlDB應用程序部署到生產環境中
作者簡介
Mitch Seymour is a Senior Data Systems Engineer at Mailchimp. Using Kafka Streams and KSQL, he has built several stream processing applications that process billions of events per day with sub-second latency. He is active in the open source community, has presented about stream processing technologies at international conferences (Kafka Summit London, 2019), speaks about Kafka Streams and KSQL at local meetups, and is a contributor to the Confluent blog.
作者簡介(中文翻譯)
Mitch Seymour 是 Mailchimp 的高級數據系統工程師。他使用 Kafka Streams 和 KSQL 構建了多個流處理應用程序,每天處理數十億個事件,並實現亚秒級的延遲。他活躍於開源社區,曾在國際會議(2019 年 Kafka Summit London)上介紹過流處理技術,並在當地的聚會上講解 Kafka Streams 和 KSQL,同時也是 Confluent 博客的貢獻者。