Data Science on the Google Cloud Platform: Implementing End-to-End Real-Time Data Pipelines: From Ingest to Machine Learning
暫譯: 在 Google Cloud Platform 上的資料科學:實作端到端即時資料管道:從資料擷取到機器學習

Valliappa Lakshmanan

買這商品的人也買了...

相關主題

商品描述

Learn how easy it is to apply sophisticated statistical and machine learning methods to real-world problems when you build on top of the Google Cloud Platform (GCP). This hands-on guide shows developers entering the data science field how to implement an end-to-end data pipeline, using statistical and machine learning methods and tools on GCP. Through the course of the book, you’ll work through a sample business decision by employing a variety of data science approaches.

Follow along by implementing these statistical and machine learning solutions in your own project on GCP, and discover how this platform provides a transformative and more collaborative way of doing data science.

You’ll learn how to:

  • Automate and schedule data ingest, using an App Engine application
  • Create and populate a dashboard in Google Data Studio
  • Build a real-time analysis pipeline to carry out streaming analytics
  • Conduct interactive data exploration with Google BigQuery
  • Create a Bayesian model on a Cloud Dataproc cluster
  • Build a logistic regression machine-learning model with Spark
  • Compute time-aggregate features with a Cloud Dataflow pipeline
  • Create a high-performing prediction model with TensorFlow
  • Use your deployed model as a microservice you can access from both batch and real-time pipelines

商品描述(中文翻譯)

學習如何輕鬆地將複雜的統計和機器學習方法應用於現實世界的問題,當你在 Google Cloud Platform (GCP) 上進行開發時。本手冊將指導進入資料科學領域的開發者如何實現端到端的資料管道,使用 GCP 上的統計和機器學習方法及工具。在本書的過程中,你將通過採用各種資料科學方法來處理一個範例商業決策。

透過在 GCP 上實施這些統計和機器學習解決方案,跟隨本書的步驟,並發現這個平台如何提供一種變革性且更具協作性的資料科學方式。

你將學會如何:

- 使用 App Engine 應用程式自動化和排程資料攝取
- 在 Google Data Studio 中創建和填充儀表板
- 建立實時分析管道以進行串流分析
- 使用 Google BigQuery 進行互動式資料探索
- 在 Cloud Dataproc 叢集上創建貝葉斯模型
- 使用 Spark 建立邏輯回歸機器學習模型
- 使用 Cloud Dataflow 管道計算時間聚合特徵
- 使用 TensorFlow 創建高效能的預測模型
- 將已部署的模型作為微服務,從批次和實時管道中訪問