Advanced Analytics with Spark: Patterns for Learning from Data at Scale
暫譯: 使用 Spark 進行進階分析:大規模數據學習的模式

Sandy Ryza, Uri Laserson, Sean Owen, Josh Wills

  • 出版商: O'Reilly
  • 出版日期: 2017-08-01
  • 定價: $1,930
  • 售價: 8.0$1,544
  • 語言: 英文
  • 頁數: 280
  • 裝訂: Paperback
  • ISBN: 1491972955
  • ISBN-13: 9781491972953
  • 相關分類: Spark
  • 立即出貨(限量) (庫存=2)

買這商品的人也買了...

商品描述

In the second edition of this practical book, four Cloudera data scientists present a set of self-contained patterns for performing large-scale data analysis with Spark. The authors bring Spark, statistical methods, and real-world data sets together to teach you how to approach analytics problems by example. Updated for Spark 2.1, this edition acts as an introduction to these techniques and other best practices in Spark programming.

You’ll start with an introduction to Spark and its ecosystem, and then dive into patterns that apply common techniques—including classification, clustering, collaborative filtering, and anomaly detection—to fields such as genomics, security, and finance.

If you have an entry-level understanding of machine learning and statistics, and you program in Java, Python, or Scala, you’ll find the book’s patterns useful for working on your own data applications.

With this book, you will:

  • Familiarize yourself with the Spark programming model
  • Become comfortable within the Spark ecosystem
  • Learn general approaches in data science
  • Examine complete implementations that analyze large public data sets
  • Discover which machine learning tools make sense for particular problems
  • Acquire code that can be adapted to many uses

商品描述(中文翻譯)

在這本實用書的第二版中,四位 Cloudera 數據科學家提出了一套獨立的模式,用於使用 Spark 進行大規模數據分析。作者將 Spark、統計方法和現實世界的數據集結合在一起,通過範例教你如何處理分析問題。本版已更新至 Spark 2.1,作為這些技術及其他 Spark 編程最佳實踐的入門介紹。

你將從 Spark 及其生態系統的介紹開始,然後深入探討應用常見技術的模式,包括分類、聚類、協同過濾和異常檢測,這些技術可應用於基因組學、安全性和金融等領域。

如果你對機器學習和統計有初步了解,並且使用 Java、Python 或 Scala 編程,你會發現這本書的模式對於開發自己的數據應用非常有用。

通過這本書,你將:

- 熟悉 Spark 編程模型
- 在 Spark 生態系統中變得自如
- 學習數據科學中的一般方法
- 檢視完整的實現,分析大型公共數據集
- 發現哪些機器學習工具適合特定問題
- 獲得可適應多種用途的代碼

最後瀏覽商品 (20)