Advanced Analytics with Spark: Patterns for Learning from Data at Scale (使用 Spark 進行進階分析:大規模數據學習模式)

Sandy Ryza, Uri Laserson, Sean Owen, Josh Wills

  • 出版商: O'Reilly
  • 出版日期: 2017-08-01
  • 定價: $1,930
  • 售價: 8.0$1,544
  • 語言: 英文
  • 頁數: 280
  • 裝訂: Paperback
  • ISBN: 1491972955
  • ISBN-13: 9781491972953
  • 相關分類: Spark
  • 立即出貨(限量) (庫存=2)

買這商品的人也買了...

相關主題

商品描述

In the second edition of this practical book, four Cloudera data scientists present a set of self-contained patterns for performing large-scale data analysis with Spark. The authors bring Spark, statistical methods, and real-world data sets together to teach you how to approach analytics problems by example. Updated for Spark 2.1, this edition acts as an introduction to these techniques and other best practices in Spark programming.

You’ll start with an introduction to Spark and its ecosystem, and then dive into patterns that apply common techniques—including classification, clustering, collaborative filtering, and anomaly detection—to fields such as genomics, security, and finance.

If you have an entry-level understanding of machine learning and statistics, and you program in Java, Python, or Scala, you’ll find the book’s patterns useful for working on your own data applications.

With this book, you will:

  • Familiarize yourself with the Spark programming model
  • Become comfortable within the Spark ecosystem
  • Learn general approaches in data science
  • Examine complete implementations that analyze large public data sets
  • Discover which machine learning tools make sense for particular problems
  • Acquire code that can be adapted to many uses

商品描述(中文翻譯)

在這本實用書的第二版中,四位Cloudera的資料科學家提出了一系列自成一體的模式,用於使用Spark進行大規模數據分析。作者們將Spark、統計方法和真實世界的數據集結合在一起,通過實例教授您如何解決分析問題。本版更新至Spark 2.1,作為這些技術和Spark編程中的其他最佳實踐的介紹。

您將從Spark及其生態系統的介紹開始,然後深入研究應用常見技術(包括分類、聚類、協同過濾和異常檢測)到基因組學、安全和金融等領域的模式。

如果您對機器學習和統計有入門級的理解,並且使用Java、Python或Scala進行編程,您會發現本書的模式對於處理自己的數據應用非常有用。

通過本書,您將能夠:
- 熟悉Spark編程模型
- 在Spark生態系統中感到自在
- 學習數據科學的一般方法
- 檢查分析大型公共數據集的完整實現
- 發現哪些機器學習工具適用於特定問題
- 獲取可適應於多種用途的代碼