Hands-On Machine Learning with Scikit-Learn and TensorFlow (Paperback)
Concepts, Tools, and Techniques for Building Intelligent Systems
暫譯: 實戰機器學習:使用 Scikit-Learn 和 TensorFlow
Aurélien Géron
- 出版商: O'Reilly
- 出版日期: 2017-04-09
- 定價: $1,980
- 售價: 5.0 折 $990
- 語言: 英文
- 頁數: 574
- 裝訂: Paperback
- ISBN: 1491962291
- ISBN-13: 9781491962299
-
相關分類:
DeepLearning、TensorFlow、Machine Learning
-
相關翻譯:
機器學習實戰:基於 Scikit-Learn 和 TensorFlow (Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques for Building Intelligent Systems) (簡中版)
-
其他版本:
Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 2/e (Paperback)
銷售排行:
👍 2018 年度 英文書 銷售排行 第 9 名
🥉 2018/7 英文書 銷售排行 第 3 名
👍 2017 年度 英文書 銷售排行 第 11 名
🥉 2017/7 英文書 銷售排行 第 3 名
🥈 2017/5 英文書 銷售排行 第 2 名
買這商品的人也買了...
-
$620$490 -
$1,200$1,140 -
$780$616 -
$360$284 -
$580$452 -
$1,098Introduction to Computation and Programming Using Python: With Application to Understanding Data, 2/e (Paperback)
-
$580$458 -
$590$502 -
$1,617Deep Learning (Hardcover)
-
$500$395 -
$360$180 -
$580$458 -
$403Tensorflow:實戰Google深度學習框架
-
$680$537 -
$790$616 -
$450$356 -
$590$460 -
$390$257 -
$480$379 -
$500$395 -
$958深度學習
-
$580$458 -
$918Machine Learning with TensorFlow
-
$1,890$1,796 -
$1,188Deep Reinforcement Learning Hands-On
相關主題
商品描述
Through a series of recent breakthroughs, deep learning has boosted the entire field of machine learning. Now, even programmers who know close to nothing about this technology can use simple, efficient tools to implement programs capable of learning from data. This practical book shows you how.
By using concrete examples, minimal theory, and two production-ready Python frameworks—scikit-learn and TensorFlow—author Aurélien Géron helps you gain an intuitive understanding of the concepts and tools for building intelligent systems. You’ll learn a range of techniques, starting with simple linear regression and progressing to deep neural networks. With exercises in each chapter to help you apply what you’ve learned, all you need is programming experience to get started.
- Explore the machine learning landscape, particularly neural nets
- Use scikit-learn to track an example machine-learning project end-to-end
- Explore several training models, including support vector machines, decision trees, random forests, and ensemble methods
- Use the TensorFlow library to build and train neural nets
- Dive into neural net architectures, including convolutional nets, recurrent nets, and deep reinforcement learning
- Learn techniques for training and scaling deep neural nets
- Apply practical code examples without acquiring excessive machine learning theory or algorithm details
商品描述(中文翻譯)
透過一系列最近的突破,深度學習提升了整個機器學習領域。現在,即使是對這項技術幾乎一無所知的程式設計師,也能使用簡單且高效的工具來實現能夠從數據中學習的程式。本書將向您展示如何做到這一點。
作者 Aurélien Géron 透過具體的範例、最少的理論以及兩個可投入生產的 Python 框架——scikit-learn 和 TensorFlow,幫助您直觀地理解構建智能系統的概念和工具。您將學習一系列技術,從簡單的線性回歸開始,逐步深入到深度神經網絡。每章都有練習題幫助您應用所學,您只需具備程式設計經驗即可開始。
- 探索機器學習的全景,特別是神經網絡
- 使用 scikit-learn 追蹤一個範例機器學習專案的全過程
- 探索幾種訓練模型,包括支持向量機、決策樹、隨機森林和集成方法
- 使用 TensorFlow 庫來構建和訓練神經網絡
- 深入了解神經網絡架構,包括卷積網絡、遞迴網絡和深度強化學習
- 學習訓練和擴展深度神經網絡的技術
- 應用實用的程式碼範例,而無需獲取過多的機器學習理論或算法細節