買這商品的人也買了...
-
$480$379 -
$990$891 -
$229R 和 Ruby 數據分析之旅 (Exploring Everyday Things with R and Ruby)
-
$480$408 -
$780$616 -
$360$281 -
$780$616 -
$980$774 -
$354$336 -
$580$452 -
$580$458 -
$560$476 -
$590$502 -
$2,020$1,919 -
$1,617Deep Learning (Hardcover)
-
$580$458 -
$352數據科學 : R語言實戰
-
$580$458 -
$500$395 -
$360$281 -
$580$458 -
$480$379 -
$450$356 -
$450$356 -
$590$460
相關主題
商品描述
There are many excellent R resources for visualization, data science, and package development. Hundreds of scattered vignettes, web pages, and forums explain how to use R in particular domains. But little has been written on how to simply make R work effectively—until now. This hands-on book teaches novices and experienced R users how to write efficient R code.
Drawing on years of experience teaching R courses, authors Colin Gillespie and Robin Lovelace provide practical advice on a range of topics—from optimizing the set-up of RStudio to leveraging C++—that make this book a useful addition to any R user’s bookshelf. Academics, business users, and programmers from a wide range of backgrounds stand to benefit from the guidance in Efficient R Programming.
- Get advice for setting up an R programming environment
- Explore general programming concepts and R coding techniques
- Understand the ingredients of an efficient R workflow
- Learn how to efficiently read and write data in R
- Dive into data carpentry—the vital skill for cleaning raw data
- Optimize your code with profiling, standard tricks, and other methods
- Determine your hardware capabilities for handling R computation
- Maximize the benefits of collaborative R programming
- Accelerate your transition from R hacker to R programmer
商品描述(中文翻譯)
有許多優秀的 R 資源可供視覺化、資料科學和套件開發使用。散佈在各處的小品、網頁和論壇解釋了如何在特定領域中使用 R。但是,關於如何有效地使用 R 的相關資料很少,直到現在。這本實用手冊教導初學者和有經驗的 R 使用者如何撰寫高效的 R 程式碼。
作者 Colin Gillespie 和 Robin Lovelace 基於多年教授 R 課程的經驗,提供了一系列實用建議,從優化 RStudio 的設置到利用 C++,使本書成為任何 R 使用者書架上有用的資源。學術界、商業使用者和來自各種背景的程式設計師都能從《高效 R 編程》中獲益。
- 獲得建立 R 程式環境的建議
- 探索一般程式設計概念和 R 程式碼技巧
- 了解高效 R 工作流程的要素
- 學習如何在 R 中高效讀寫資料
- 深入探討資料整理技巧,這是清理原始資料的重要技能
- 透過分析、標準技巧和其他方法優化程式碼
- 確定處理 R 計算的硬體能力
- 最大化協作 R 程式設計的好處
- 加速從 R 駭客轉變為 R 程式設計師的過程