Python for Finance (Paperback)
暫譯: 金融中的 Python (平裝本)

Yves Hilpisch

買這商品的人也買了...

相關主題

商品描述

The financial industry has adopted Python at a tremendous rate recently, with some of the largest investment banks and hedge funds using it to build core trading and risk management systems. This hands-on guide helps both developers and quantitative analysts get started with Python, and guides you through the most important aspects of using Python for quantitative finance.

Using practical examples through the book, author Yves Hilpisch also shows you how to develop a full-fledged framework for Monte Carlo simulation-based derivatives and risk analytics, based on a large, realistic case study. Much of the book uses interactive IPython Notebooks, with topics that include:

  • Fundamentals: Python data structures, NumPy array handling, time series analysis with pandas, visualization with matplotlib, high performance I/O operations with PyTables, date/time information handling, and selected best practices
  • Financial topics: mathematical techniques with NumPy, SciPy and SymPy such as regression and optimization; stochastics for Monte Carlo simulation, Value-at-Risk, and Credit-Value-at-Risk calculations; statistics for normality tests, mean-variance portfolio optimization, principal component analysis (PCA), and Bayesian regression
  • Special topics: performance Python for financial algorithms, such as vectorization and parallelization, integrating Python with Excel, and building financial applications based on Web technologies

商品描述(中文翻譯)

金融業最近以驚人的速度採用 Python,許多大型投資銀行和對沖基金都使用它來構建核心交易和風險管理系統。本書是一本實用指南,幫助開發人員和量化分析師入門 Python,並指導您了解使用 Python 進行量化金融的最重要方面。

作者 Yves Hilpisch 通過書中的實際範例,還展示了如何基於一個大型、現實的案例研究,開發一個完整的蒙地卡羅模擬衍生品和風險分析框架。本書的大部分內容使用互動式 IPython Notebooks,主題包括:

- **基本概念:** Python 數據結構、NumPy 陣列處理、使用 pandas 進行時間序列分析、使用 matplotlib 進行可視化、使用 PyTables 進行高效能 I/O 操作、日期/時間信息處理,以及選定的最佳實踐
- **金融主題:** 使用 NumPy、SciPy 和 SymPy 的數學技術,如回歸和優化;蒙地卡羅模擬的隨機過程、風險價值 (Value-at-Risk) 和信用風險價值 (Credit-Value-at-Risk) 計算;用於常態性檢驗的統計學、均值-方差投資組合優化、主成分分析 (PCA) 和貝葉斯回歸
- **特殊主題:** 針對金融算法的性能優化 Python,如向量化和並行化,將 Python 與 Excel 整合,以及基於 Web 技術構建金融應用程序