買這商品的人也買了...
-
$2,006Understanding Linux Network Internals (Paperback)
-
$2,050$1,948 -
$590$502 -
$1,350$1,323 -
$360$281 -
$480$379 -
$2,980$2,831 -
$780$616 -
$550$468 -
$352Python 編程實戰:運用設計模式、並發和程序庫創建高質量程序
-
$620$484 -
$680$537 -
$780$616 -
$400$316 -
$690$538 -
$1,670$1,587 -
$860$731 -
$500$425 -
$360$281 -
$580$458 -
$590$460 -
$390$308 -
$420$357 -
$1,584gRPC: Up and Running: Building Cloud Native Applications with Go and Java for Docker and Kubernetes
-
$1,500$1,425
商品描述
Build software that combines Python’s expressivity with the performance and control of C (and C++). It’s possible with Cython, the compiler and hybrid programming language used by foundational packages such as NumPy, and prominent in projects including Pandas, h5py, and scikits-learn. In this practical guide, you’ll learn how to use Cython to improve Python’s performance—up to 3000x— and to wrap C and C++ libraries in Python with ease.
Author Kurt Smith takes you through Cython’s capabilities, with sample code and in-depth practice exercises. If you’re just starting with Cython, or want to go deeper, you’ll learn how this language is an essential part of any performance-oriented Python programmer’s arsenal.
- Use Cython’s static typing to speed up Python code
- Gain hands-on experience using Cython features to boost your numeric-heavy Python
- Create new types with Cython—and see how fast object-oriented programming in Python can be
- Effectively organize Cython code into separate modules and packages without sacrificing performance
- Use Cython to give Pythonic interfaces to C and C++ libraries
- Optimize code with Cython’s runtime and compile-time profiling tools
- Use Cython’s prange function to parallelize loops transparently with OpenMP
商品描述(中文翻譯)
建構結合 Python 表達力與 C(及 C++)性能和控制的軟體。這可以透過 Cython 實現,Cython 是一種編譯器和混合程式語言,被 NumPy 等基礎套件使用,並在 Pandas、h5py 和 scikits-learn 等專案中廣泛應用。在這本實用指南中,您將學習如何使用 Cython 來提升 Python 的性能——高達 3000 倍——並輕鬆地將 C 和 C++ 函式庫包裝在 Python 中。
作者 Kurt Smith 將帶您了解 Cython 的功能,並提供範例程式碼和深入的實作練習。如果您剛開始接觸 Cython,或想更深入了解,您將學習到這種語言是任何以性能為導向的 Python 程式設計師工具箱中不可或缺的一部分。
- 使用 Cython 的靜態類型來加速 Python 程式碼
- 獲得使用 Cython 功能來提升數值密集型 Python 的實作經驗
- 使用 Cython 創建新類型——並了解物件導向程式設計在 Python 中的執行速度有多快
- 有效地將 Cython 程式碼組織成獨立的模組和套件,而不犧牲性能
- 使用 Cython 為 C 和 C++ 函式庫提供 Pythonic 介面
- 使用 Cython 的執行時和編譯時分析工具來優化程式碼
- 使用 Cython 的 prange 函數透過 OpenMP 透明地平行化迴圈