DATA MINING with IBM SPSS through examples
Cesar Perez Lopez
- 出版商: CreateSpace Independ
- 出版日期: 2013-06-26
- 售價: $1,100
- 貴賓價: 9.5 折 $1,045
- 語言: 英文
- 頁數: 282
- 裝訂: Paperback
- ISBN: 1490541942
- ISBN-13: 9781490541945
-
相關分類:
SPSS、Data-mining
無法訂購
相關主題
商品描述
This book presents the most common techniques used in data mining in a simple and easy to understand through one of the most common software solutions from among those existing in the market, in particular, IBM SPSS. Pursued as initial aim clarifying the applications concerning methods traditionally rated as difficult or dull. It seeks to present applications in data mining without having to manage high mathematical developments or complicated theoretical algorithms, which is the most common reason for the difficulties in understanding and implementation of this matter. Today data mining is used in different fields of science. Noteworthy applications in banking, and financial analysis of markets and trade, insurance and private health, in education, in industrial processes, in medicine, biology and bioengineering, telecommunications and in many other areas. Essentials to get started in data mining, regardless of the field in which it is applied, is the understanding of own concepts, task that does not require nor much less the domain of scientific apparatus involved in the matter. Later, when either necessary operative advanced, computer programs allow the results without having to decipher the mathematical development of the algorithms that are under the procedures. This book describes the simplest possible data mining concepts, so that they are understandable by readers with different training. The chapters begin describing the techniques in affordable language and then presenting the way to treat them through practical applications. An important part of each chapter are case studies completely resolved, including the interpretation of the results, which is precisely the most important thing in any matter with which they work. The book begins with an introduction to mining data and its phases. In successive chapters develop the initial phases (selection of information, data exploration, data cleansing, transformation of data, etc.). Subsequently elaborates on specific data mining, both predictive and descriptive techniques. Predictive techniques covers all models of regression, discriminant analysis, decision trees, neural networks and other techniques based on models. The descriptive techniques vary dimension reduction techniques, techniques of classification and segmentation (clustering), and exploratory data analysis techniques.
商品描述(中文翻譯)
本書以簡單易懂的方式介紹了數據挖掘中最常用的技術,並選擇了市場上最常見的軟體解決方案之一,特別是 IBM SPSS。其初衷是澄清那些傳統上被認為困難或乏味的方法的應用。它旨在展示數據挖掘的應用,而無需處理高深的數學發展或複雜的理論演算法,這正是理解和實施此領域的主要困難所在。
如今,數據挖掘被應用於不同的科學領域。值得注意的應用包括銀行業、金融市場與貿易分析、保險與私人健康、教育、工業過程、醫學、生物學與生物工程、電信以及許多其他領域。無論應用於何種領域,開始進行數據挖掘的基本要素是理解自身概念,這一任務並不需要掌握涉及的科學工具。隨著需求的增加,計算機程式能夠提供結果,而無需解讀支撐程序的數學發展。
本書描述了盡可能簡單的數據挖掘概念,以便不同背景的讀者都能理解。各章節以通俗的語言開始描述技術,然後通過實際應用展示如何處理這些技術。每章的一個重要部分是完全解決的案例研究,包括結果的解釋,這正是任何工作中最重要的部分。
本書以數據挖掘及其階段的介紹開始。在隨後的章節中,發展初始階段(信息選擇、數據探索、數據清理、數據轉換等)。接著詳細介紹特定的數據挖掘技術,包括預測性和描述性技術。預測性技術涵蓋所有回歸模型、判別分析、決策樹、神經網絡及其他基於模型的技術。描述性技術則包括降維技術、分類和分群技術,以及探索性數據分析技術。