Introduction to Datafication: Implement Datafication Using AI and ML Algorithms
Goniwada, Shivakumar R.
- 出版商: Apress
- 出版日期: 2023-06-28
- 售價: $2,020
- 貴賓價: 9.5 折 $1,919
- 語言: 英文
- 頁數: 273
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1484294955
- ISBN-13: 9781484294956
-
相關分類:
人工智慧、Algorithms-data-structures
海外代購書籍(需單獨結帳)
相關主題
商品描述
Datafication is becoming increasingly prevalent in many areas of our lives, from business to education and healthcare. It has the potential to improve decision-making by providing insights into patterns, trends, and correlation between seemingly unconnected pieces of data. This book explains the evolution, principles, and patterns of datafication used in our day-to-day activities. It covers how to collect data from a variety of sources, using technologies such as edge, streaming techniques, REST, and frameworks, as well as data cleansing and data lineage. A data analysis framework is provided to guide you in designing and developing AI and ML projects, including the details of sentiment and behavioral analytics.
Introduction to Datafication teaches you how to engineer AI and ML projects by using various methodologies, covers the security mechanisms to be applied for datafication, and shows you how to govern the datafication process with a well-defined governance framework.
What You Will Learn
- Understand the principles and patterns to be adopted for datafication
- Gain techniques for sourcing and mining data, and for sharing data with a data pipeline
- Leverage the AI and ML algorithms most suitable for datafication
- Understand the data analysis framework used in every AI and ML project
- Master the details of sentiment and behavioral analytics through practical examples
- Utilize development methodologies for datafication engineering and the related security and governance framework
Who This Book Is For
Students, data scientists, data analysts, and AI and ML engineers
商品描述(中文翻譯)
這本書介紹了將我們世界的各個方面轉化為可以收集、分析和用於做出決策的數據所需的過程和框架。您將了解用於從多個來源收集和處理數據的技術,並學習如何使用人工智能和機器學習模型分析數據。
數據化在我們生活的許多領域中越來越普遍,從商業到教育和醫療保健。它有潛力通過提供有關看似不相關的數據之間的模式、趨勢和相關性的洞察來改善決策。本書解釋了在我們日常活動中使用的數據化的演變、原則和模式。它涵蓋了如何使用邊緣、流式技術、REST和框架等技術從各種來源收集數據,以及數據清理和數據譜系。提供了一個數據分析框架,指導您設計和開發人工智能和機器學習項目,包括情感和行為分析的細節。
《數據化入門》教您如何使用各種方法來設計人工智能和機器學習項目,涵蓋了應用於數據化的安全機制,並向您展示如何通過明確定義的治理框架來管理數據化過程。
您將學到什麼
- 理解數據化所需採用的原則和模式
- 獲取數據來源和挖掘數據的技術,以及通過數據管道共享數據的技巧
- 利用最適合數據化的人工智能和機器學習算法
- 理解每個人工智能和機器學習項目中使用的數據分析框架
- 通過實際示例掌握情感和行為分析的細節
- 利用數據化工程和相關安全和治理框架的開發方法論
本書適合對象
本書適合學生、數據科學家、數據分析師和人工智能和機器學習工程師。
作者簡介
作者簡介(中文翻譯)
Shivakumar R. Goniwada是一位作家、發明家、首席企業架構師和技術領導者,擁有超過23年的雲原生架構、數據分析和事件驅動系統設計經驗。他在Accenture工作,領導一支經驗豐富的技術企業和雲架構團隊。在他的23年經驗中,Shivakumar帶領過許多跨行業和全球的複雜項目。他在雲計算、多語言架構、軟體工程和物聯網方面擁有10項軟體專利。Shivakumar是多個全球和內部會議的演講者。他擁有多個數據科學認證:Accenture Master Technology Architecture (MTA)、Google Professional和AWS。他在MIT Sloan School of Management完成了執行MBA學位。他還撰寫了Apress的書籍《雲原生架構與設計》。