Automated Deep Learning Using Neural Network Intelligence: Develop and Design Pytorch and Tensorflow Models Using Python
暫譯: 自動化深度學習與神經網絡智能:使用 Python 開發與設計 Pytorch 和 Tensorflow 模型

Gridin, Ivan

  • 出版商: Apress
  • 出版日期: 2022-06-21
  • 售價: $2,100
  • 貴賓價: 9.5$1,995
  • 語言: 英文
  • 頁數: 404
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 1484281489
  • ISBN-13: 9781484281482
  • 相關分類: Python程式語言DeepLearningTensorFlow
  • 立即出貨 (庫存=1)

買這商品的人也買了...

相關主題

商品描述

Chapter 1: Introduction to Neural Network Intelligence1.1 Installation1.2 Trial, search space, experiment1.3 Finding maxima of multivariate function1.4 Interacting with NNI
Chapter 2: Hyper-Parameter Tuning2.1 Preparing a model for hyper-parameter tuning2.2 Running experiment2.3 Interpreting results2.4 Debugging
Chapter 3: Hyper-Parameter Tuners
Chapter 4: Neural Architecture Search: Multi-trial4.1 Constructing a search space4.2 Running architecture search4.3 Exploration strategies4.4 Comparing exploration strategies
Chapter 5: Neural Architecture Search: One-shot5.1 What is one-shot NAS?5.2 ENAS5.3 DARTS
Chapter 6: Model Compression6.1 What is model compression?6.2 Compressing your model6.3 Pruning6.4 Quantization
Chapter 7: Advanced NNI

商品描述(中文翻譯)

第1章:神經網絡智能介紹
1.1 安裝
1.2 試驗、搜索空間、實驗
1.3 尋找多變量函數的極大值
1.4 與NNI互動

第2章:超參數調整
2.1 為超參數調整準備模型
2.2 執行實驗
2.3 解釋結果
2.4 除錯

第3章:超參數調整器

第4章:神經架構搜索:多次試驗
4.1 構建搜索空間
4.2 執行架構搜索
4.3 探索策略
4.4 比較探索策略

第5章:神經架構搜索:一次性
5.1 什麼是一次性NAS?
5.2 ENAS
5.3 DARTS

第6章:模型壓縮
6.1 什麼是模型壓縮?
6.2 壓縮你的模型
6.3 剪枝
6.4 量化

第7章:進階NNI

作者簡介

Ivan Gridin is a machine learning expert from Moscow who has worked on distributive high-load systems and implemented different machine learning approaches in practice. One of the primary areas of his research is the design and analysis of predictive time series models. Ivan has fundamental math skills in probability theory, random process theory, time series analysis, machine learning, deep learning, and optimization. He has published books on genetic algorithms and time series analysis.

作者簡介(中文翻譯)

伊凡·格里丁 是來自莫斯科的機器學習專家,曾在分散式高負載系統上工作並實際應用不同的機器學習方法。他的研究主要集中在預測時間序列模型的設計與分析。伊凡在概率論、隨機過程理論、時間序列分析、機器學習、深度學習和優化方面擁有扎實的數學基礎。他已出版有關遺傳算法和時間序列分析的書籍。