Productive and Efficient Data Science with Python: Best Practices Guide to Implementing Aiops

Sarkar, Tirthajyoti

  • 出版商: Apress
  • 出版日期: 2022-07-02
  • 售價: $2,350
  • 貴賓價: 9.5$2,233
  • 語言: 英文
  • 頁數: 290
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 1484281209
  • ISBN-13: 9781484281208
  • 相關分類: Python程式語言Data Science
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

Chapter 1: What is Productive and Efficient Data Science?Chapter Goal: To introduce the readers with the concept of doing data science tasks efficiently and more productively and illustrating potential pitfalls in their everyday work.No of pages - 10Subtopics- Typical data science pipeline- Short examples of inefficient programming in data science- Some pitfalls to avoid- Efficiency and productivity go hand in hand- Overview of tools and techniques for a productive data science pipeline- Skills and attitude for productive data science
Chapter 2: Better Programming Principles for Efficient Data ScienceChapter Goal: Help readers grasp the idea of efficient programming techniques and how they can be applied to a typical data science task flow.No of pages - 15Subtopics- The concept of time and space complexity, Big-O notation- Why complexity matters for data science- Examples of inefficient programming in data science tasks- What you can do instead- Measuring code execution timing
Chapter 3: How to Use Python Data Science Packages more ProductivelyChapter Goal: Illustrate handful of tricks and techniques to use the most well-known Python data science packages - Numpy, Pandas, Matplotlib, Seaborn, Scipy - more productively.No of pages - 20Subtopics- Why Numpy is faster than regular Python code and how much- Using Numpy efficiently- Using Pandas productively- Matplotlib and Seaborn code for and productive EDA- Using SciPy for common data science tasks
Chapter 4: Writing Machine Learning Code More ProductivelyChapter Goal: Teach the reader about writing efficient and modular machine learning code for productive data science pipeline with hands-on examples using Scikit-learn.No of pages - 15Subtopics- Why modular code for machine learning and deep learning- Scikit-learn tools and techniques- Systematic evaluation of Scikit-learn ML algorithms in automated fashion- Decision boundary visualization with custom function- Hyperparameter search in Scikit-learn
Chapter 5: Modular and Productive Deep Learning CodeChapter Goal: Teach the reader about mixing modular programming style in deep learning code with hands-on examples using Keras/TensorFlow.No of pages - 25Subtopics- Why modular code and object-oriented style for deep learning- Wrapper functions with Keras for faster deep learning experimentations- A single function to streamline image classification task flow- Visualize activation functions of neural networks- Custom callback functions in Keras and their utilities- Using Scikit-learn wrapper for hyperparameter search in Keras
Chapter 6: Build Your Own Machine Learning Estimator/PackageChapter Goal: Illustrate how to build a new Python machine learning module/package from scratch.No of pages - 15Subtopics- Why write your own ML package/module?- A simple example vs. a data scientist's example- A good, old Linear Regression estimator - with a twist- How do you start building?- Add utility functions- Do more with object-oriented approach
Chapter 7: Some Cool Utility PackagesChapter Goal: Introduce the readers to the idea of executing data science tasks efficiently by going beyond traditional stack and utilizing exciting, new libraries.No of pages - 20Subtopics- The great Python

作者簡介

Dr. Tirthajyoti Sarkar lives in the San Francisco Bay area works as a Data Science and Solutions Engineering Manager at Adapdix Corp., where he architects Artificial intelligence and Machine learning solutions for edge-computing based systems powering the Industry 4.0 and Smart manufacturing revolution across a wide range of industries. Before that, he spent more than a decade developing best-in-class semiconductor technologies for power electronics.
He has published data science books, and regularly contributes highly cited AI/ML-related articles on top platforms such as KDNuggets and Towards Data Science. Tirthajyoti has developed multiple open-source software packages in the field of statistical modeling and data analytics. He has 5 US patents and more than thirty technical publications in international journals and conferences.
He conducts regular workshops and participates in expert panels on various AI/ML topics and contributes to the broader data science community in numerous ways. Tirthajyoti holds a Ph.D. from the University of Illinois and a B.Tech degree from the Indian Institute of Technology, Kharagpur.