Computer Vision with Maker Tech: Detecting People with a Raspberry Pi, a Thermal Camera, and Machine Learning
暫譯: 使用 Maker 技術的電腦視覺:利用 Raspberry Pi、熱成像攝影機和機器學習檢測人員

Manganiello, Fabio

  • 出版商: Apress
  • 出版日期: 2021-02-11
  • 售價: $2,350
  • 貴賓價: 9.5$2,233
  • 語言: 英文
  • 頁數: 234
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 1484268202
  • ISBN-13: 9781484268209
  • 相關分類: MakerRaspberry PiMachine LearningComputer Vision
  • 海外代購書籍(需單獨結帳)

買這商品的人也買了...

相關主題

商品描述

Harness the untapped potential of combining a decentralized Internet of Things (IoT) with the ability to make predictions on real-world fuzzy data. This book covers the theory behind machine learning models and shows you how to program and assemble a voice-controlled security.

You'll learn the differences between supervised and unsupervised learning and how the nuts-and-bolts of a neural network actually work. You'll also learn to identify and measure the metrics that tell how well your classifier is doing. An overview of other types of machine learning techniques, such as genetic algorithms, reinforcement learning, support vector machines, and anomaly detectors will get you up and running with a familiarity of basic machine learning concepts. Chapters focus on the best practices to build models that can actually scale and are flexible enough to be embedded in multiple applications and easily reusable.

With those concepts covered, you'll dive into the tools for setting up a network to collect and process the data points to be fed to our models by using some of the ubiquitous and cheap pieces of hardware that make up today's home automation and IoT industry, such as the RaspberryPi, Arduino, ESP8266, etc. Finally, you'll put things together and work through a couple of practical examples. You'll deploy models for detecting the presence of people in your house, and anomaly detectors that inform you if some sensors have measured something unusual. And you'll add a voice assistant that uses your own model to recognize your voice.

What You'll Learn

  • Develop a voice assistant to control your IoT devices
  • Implement Computer Vision to detect changes in an environment
  • Go beyond simple projects to also gain a grounding machine learning in general
  • See how IoT can become "smarter" with the inception of machine learning techniques
  • Build machine learning models using TensorFlow and OpenCV

Who This Book Is For
Makers and amateur programmers interested in taking simple IoT projects to the next level using TensorFlow and machine learning. Also more advanced programmers wanting an easy on ramp to machine learning concepts.

商品描述(中文翻譯)

利用去中心化的物聯網 (IoT) 與對現實世界模糊數據進行預測的能力,發掘未被開發的潛力。本書涵蓋了機器學習模型背後的理論,並展示如何編程和組裝一個語音控制的安全系統。

您將學習監督式學習和非監督式學習之間的差異,以及神經網絡的基本運作原理。您還將學會識別和衡量指標,以了解您的分類器表現如何。對其他類型的機器學習技術的概述,例如遺傳算法、強化學習、支持向量機和異常檢測器,將使您熟悉基本的機器學習概念。各章節專注於建立實際可擴展且足夠靈活以嵌入多個應用程序並易於重用的模型的最佳實踐。

在涵蓋這些概念後,您將深入了解設置網絡以收集和處理數據點的工具,這些數據點將通過一些當今家庭自動化和物聯網行業中普遍且便宜的硬體來供應給我們的模型,例如 Raspberry Pi、Arduino、ESP8266 等。最後,您將把所有內容整合在一起,並通過幾個實際範例進行操作。您將部署模型以檢測家中是否有人存在,並使用異常檢測器告知您某些傳感器是否測量到異常情況。您還將添加一個語音助手,使用您自己的模型來識別您的聲音。

您將學到的內容


  • 開發一個語音助手來控制您的物聯網設備

  • 實現計算機視覺以檢測環境中的變化

  • 超越簡單項目,獲得機器學習的一般基礎

  • 了解物聯網如何隨著機器學習技術的引入變得更“智能”

  • 使用 TensorFlow 和 OpenCV 構建機器學習模型

本書適合誰閱讀
本書適合對使用 TensorFlow 和機器學習將簡單的物聯網項目提升到更高水平的創客和業餘程序員,以及希望輕鬆入門機器學習概念的更高級程序員。

作者簡介

Fabio Manganiello is a 15 year veteran in machine learning and dynamic programming techniques. In his career, he has worked on natural language processing with a focus on automatically labelling and generating definitions for unknown terms in big corpora of unstructured documents; on an early voice assistant (Voxifera) developed back in 2008; on machine learning techniques for clustering, inferring correlations, and preventing the next step in complex attacks by analysing the alerts of an intrusion detection system; and several libraries to make model design and training easier. In the recent years, he has combined his passion for machine learning with IoT and distributed systems. From self-driving robots, to people detection, to anomaly detection, to data forecasting, he likes to combine the flexibility and affordability of tools such as RaspberryPi, Arduino, ESP8266, MQTT, and cheap sensors with the power of machine learning models. He's an active IEEE member and open source enthusiast, and has contributed to hundreds of open source projects over the years.

作者簡介(中文翻譯)

Fabio Manganiello 是一位擁有 15 年經驗的機器學習和動態程式設計技術專家。在他的職業生涯中,他專注於自然語言處理,致力於自動標記和生成大型非結構文件語料庫中未知術語的定義;參與了 2008 年開發的早期語音助手 (Voxifera);研究了用於聚類、推斷相關性以及通過分析入侵檢測系統的警報來防止複雜攻擊的下一步的機器學習技術;並開發了幾個庫以簡化模型設計和訓練。近年來,他將對機器學習的熱情與物聯網 (IoT) 和分散式系統相結合。從自駕機器人、人體檢測、異常檢測到數據預測,他喜歡將 RaspberryPi、Arduino、ESP8266、MQTT 和廉價傳感器等工具的靈活性和經濟性與機器學習模型的強大功能相結合。他是 IEEE 的活躍成員和開源愛好者,多年來為數百個開源項目做出了貢獻。