Applied Neural Networks with Tensorflow 2: API Oriented Deep Learning with Python
暫譯: 應用神經網絡與 TensorFlow 2:以 API 為導向的 Python 深度學習

Yalçın, Orhan Gazi

買這商品的人也買了...

相關主題

商品描述

Implement deep learning applications using TensorFlow while learning the "why" through in-depth conceptual explanations.
You'll start by learning what deep learning offers over other machine learning models. Then familiarize yourself with several technologies used to create deep learning models. While some of these technologies are complementary, such as Pandas, Scikit-Learn, and Numpy--others are competitors, such as PyTorch, Caffe, and Theano. This book clarifies the positions of deep learning and Tensorflow among their peers.
You'll then work on supervised deep learning models to gain applied experience with the technology. A single-layer of multiple perceptrons will be used to build a shallow neural network before turning it into a deep neural network. After showing the structure of the ANNs, a real-life application will be created with Tensorflow 2.0 Keras API. Next, you'll work on data augmentation and batch normalization methods. Then, the Fashion MNIST dataset will be used to train a CNN. CIFAR10 and Imagenet pre-trained models will be loaded to create already advanced CNNs.
Finally, move into theoretical applications and unsupervised learning with auto-encoders and reinforcement learning with tf-agent models. With this book, you'll delve into applied deep learning practical functions and build a wealth of knowledge about how to use TensorFlow effectively.
What You'll Learn

  • Compare competing technologies and see why TensorFlow is more popular
  • Generate text, image, or sound with GANs
  • Predict the rating or preference a user will give to an item
  • Sequence data with recurrent neural networks

Who This Book Is For
Data scientists and programmers new to the fields of deep learning and machine learning APIs.

商品描述(中文翻譯)

實作深度學習應用程式,使用 TensorFlow 並透過深入的概念解釋來學習「為什麼」。
您將首先了解深度學習相較於其他機器學習模型所提供的優勢。接著,熟悉幾種用於創建深度學習模型的技術。這些技術中有些是互補的,例如 Pandas、Scikit-Learn 和 Numpy,而其他則是競爭者,例如 PyTorch、Caffe 和 Theano。本書澄清了深度學習和 TensorFlow 在同類技術中的定位。
然後,您將針對監督式深度學習模型進行實作,以獲得應用該技術的經驗。將使用多層感知器的單層來構建淺層神經網絡,然後將其轉換為深層神經網絡。在展示人工神經網絡(ANNs)的結構後,將使用 TensorFlow 2.0 Keras API 創建一個實際應用。接下來,您將研究數據增強和批量正規化方法。然後,將使用 Fashion MNIST 數據集來訓練卷積神經網絡(CNN)。CIFAR10 和 Imagenet 的預訓練模型將被加載以創建已經先進的 CNN。
最後,進入理論應用和無監督學習,使用自編碼器和強化學習的 tf-agent 模型。本書將深入探討應用深度學習的實用功能,並建立有關如何有效使用 TensorFlow 的豐富知識。
**您將學到的內容**

- 比較競爭技術,了解為什麼 TensorFlow 更受歡迎
- 使用 GAN 生成文本、圖像或聲音
- 預測用戶對某項物品的評分或偏好
- 使用遞歸神經網絡處理序列數據

**本書適合誰閱讀**
數據科學家和對深度學習及機器學習 API 新手的程式設計師。

作者簡介

Orhan Gazi Yalçın is a joint Ph.D. candidate at the University of Bologna & the Polytechnic University of Madrid. After completing his double major in business and law, he began his career in Istanbul, working for a city law firm, Allen & Overy, and a global entrepreneurship network, Endeavor. During his academic and professional career, he taught himself programming and excelled in machine learning. He currently conducts research on hotly debated law & AI topics such as explainable artificial intelligence and the right to explanation by combining his technical and legal skills. In his spare time, he enjoys free-diving, swimming, exercising as well as discovering new countries, cultures, and cuisines.

作者簡介(中文翻譯)

Orhan Gazi Yalçın 是博洛尼亞大學與馬德里理工大學的聯合博士候選人。在完成商業與法律的雙主修後,他在伊斯坦堡開始了他的職業生涯,曾在一家城市律師事務所 Allen & Overy 和一家全球創業網絡 Endeavor 工作。在他的學術和職業生涯中,他自學程式設計並在機器學習方面表現出色。他目前的研究集中在法律與人工智慧的熱門議題上,例如可解釋的人工智慧(explainable artificial intelligence)和解釋權(right to explanation),並結合他的技術與法律技能進行探討。在空閒時間,他喜歡自由潛水、游泳、運動,以及探索新國家、新文化和新美食。