Deep Reinforcement Learning in Unity: With Unity ML Toolkit
暫譯: Unity中的深度強化學習:使用Unity ML工具包
Majumder, Abhilash
- 出版商: Apress
- 出版日期: 2020-12-27
- 售價: $2,450
- 貴賓價: 9.5 折 $2,328
- 語言: 英文
- 頁數: 564
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1484265025
- ISBN-13: 9781484265024
-
相關分類:
Reinforcement、遊戲引擎 Game-engine、DeepLearning
立即出貨 (庫存=1)
買這商品的人也買了...
相關主題
商品描述
Gain an in-depth overview of reinforcement learning for autonomous agents in game development with Unity.
This book starts with an introduction to state-based reinforcement learning algorithms involving Markov models, Bellman equations, and writing custom C# code with the aim of contrasting value and policy-based functions in reinforcement learning. Then, you will move on to path finding and navigation meshes in Unity, setting up the ML Agents Toolkit (including how to install and set up ML agents from the GitHub repository), and installing fundamental machine learning libraries and frameworks (such as Tensorflow). You will learn about: deep learning and work through an introduction to Tensorflow for writing neural networks (including perceptron, convolution, and LSTM networks), Q learning with Unity ML agents, and porting trained neural network models in Unity through the Python-C# API. You will also explore the OpenAI Gym Environment used throughout the book.
Deep Reinforcement Learning in Unity provides a walk-through of the core fundamentals of deep reinforcement learning algorithms, especially variants of the value estimation, advantage, and policy gradient algorithms (including the differences between on and off policy algorithms in reinforcement learning). These core algorithms include actor critic, proximal policy, and deep deterministic policy gradients and its variants. And you will be able to write custom neural networks using the Tensorflow and Keras frameworks.
Deep learning in games makes the agents learn how they can perform better and collect their rewards in adverse environments without user interference. The book provides a thorough overview of integrating ML Agents with Unity for deep reinforcement learning.
What You Will Learn
- Understand how deep reinforcement learning works in games
- Grasp the fundamentals of deep reinforcement learning
- Integrate these fundamentals with the Unity ML Toolkit SDK
- Gain insights into practical neural networks for training Agent Brain in the context of Unity ML Agents
- Create different models and perform hyper-parameter tuning
- Understand the Brain-Academy architecture in Unity ML Agents
- Understand the Python-C# API interface during real-time training of neural networks
- Grasp the fundamentals of generic neural networks and their variants using Tensorflow
- Create simulations and visualize agents playing games in Unity
Who This Book Is For
Readers with preliminary programming and game development experience in Unity, and those with experience in Python and a general idea of machine learning
商品描述(中文翻譯)
獲得有關使用 Unity 開發遊戲的自主代理強化學習的深入概述。
本書首先介紹基於狀態的強化學習算法,涉及馬可夫模型、貝爾曼方程以及編寫自定義 C# 代碼,旨在對比強化學習中的價值函數和策略函數。接著,您將學習 Unity 中的路徑尋找和導航網格,設置 ML Agents Toolkit(包括如何從 GitHub 存儲庫安裝和設置 ML 代理),以及安裝基本的機器學習庫和框架(如 Tensorflow)。您將學習:深度學習,並通過介紹 Tensorflow 來編寫神經網絡(包括感知器、卷積和 LSTM 網絡)、使用 Unity ML 代理的 Q 學習,以及通過 Python-C# API 在 Unity 中移植訓練好的神經網絡模型。您還將探索本書中使用的 OpenAI Gym 環境。
《Unity 中的深度強化學習》提供了深度強化學習算法核心基礎的逐步講解,特別是價值估計、優勢和策略梯度算法的變體(包括強化學習中在線和離線策略算法之間的差異)。這些核心算法包括演員-評論家、近端策略和深度確定性策略梯度及其變體。您將能夠使用 Tensorflow 和 Keras 框架編寫自定義神經網絡。
遊戲中的深度學習使代理學會如何在不需要用戶干預的情況下,在不利環境中表現得更好並獲取獎勵。本書提供了將 ML 代理與 Unity 整合以進行深度強化學習的全面概述。
您將學到什麼
- 理解深度強化學習在遊戲中的運作方式
- 掌握深度強化學習的基本原理
- 將這些基本原理與 Unity ML Toolkit SDK 整合
- 獲得有關在 Unity ML 代理上下文中訓練代理大腦的實用神經網絡的見解
- 創建不同的模型並進行超參數調整
- 理解 Unity ML 代理中的大腦-學院架構
- 理解在神經網絡實時訓練過程中的 Python-C# API 接口
- 掌握使用 Tensorflow 的通用神經網絡及其變體的基本原理
- 創建模擬並可視化代理在 Unity 中玩遊戲的過程
本書適合誰
適合具有初步編程和 Unity 遊戲開發經驗的讀者,以及對 Python 有經驗並對機器學習有一般了解的人士。
作者簡介
Abhilash Majumder is a natural language processing research engineer for HSBC (UK/India) and technical mentor for Udactiy (ML). He also has been associated with Unity Technologies and was a speaker at Unite India-18, and has educated close to 1,000 students from EMEA and SEPAC (India) on Unity. He is an ML contributor and curator for Open Source Google Research and Tensorflow, and creator of ML libraries under Python Package Index (Pypi). He is an online educationalist for Udemy and a deep learning mentor for Upgrad.
Abhilash was an apprentice/student ambassador for Unity Technologies where he educated corporate employees and students on using general Unity for game development. He was a technical mentor (AI programming) for the Unity Ambassadors Community and Content Production. He has been associated with Unity Technologies for general education, with an emphasis on graphics and machine learning. He is one of the first content creators for Unity Technologies India since 2017.
作者簡介(中文翻譯)
Abhilash Majumder 是匯豐銀行(英國/印度)的自然語言處理研究工程師,以及 Udacity(機器學習)的技術導師。他曾與 Unity Technologies 合作,並在 Unite India-18 擔任演講者,教育了近 1,000 名來自 EMEA 和 SEPAC(印度)的學生有關 Unity 的知識。他是 Open Source Google Research 和 TensorFlow 的機器學習貢獻者和策展人,並在 Python Package Index(Pypi)下創建了機器學習庫。他還是 Udemy 的線上教育者,以及 Upgrad 的深度學習導師。
Abhilash 曾是 Unity Technologies 的學徒/學生大使,負責教育企業員工和學生使用一般的 Unity 進行遊戲開發。他是 Unity 大使社區和內容製作的技術導師(人工智慧編程)。他與 Unity Technologies 在一般教育方面有關聯,特別強調圖形和機器學習。自 2017 年以來,他是 Unity Technologies India 的首批內容創作者之一。