Deep Learning on Windows: Building Deep Learning Computer Vision Systems on Microsoft Windows
暫譯: Windows上的深度學習:在Microsoft Windows上構建深度學習計算機視覺系統
Amaratunga, Thimira
- 出版商: Apress
- 出版日期: 2020-12-16
- 售價: $2,210
- 貴賓價: 9.5 折 $2,100
- 語言: 英文
- 頁數: 338
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1484264304
- ISBN-13: 9781484264300
-
相關分類:
DeepLearning、Computer Vision
海外代購書籍(需單獨結帳)
買這商品的人也買了...
-
$700Professional Scrum Development with Microsoft Visual Studio 2012 (Paperback)
-
$505Processing 編程學習指南(原書第2版)
-
$958深度學習
-
$602Windows Sysinternals 實戰指南
-
$360$284 -
$1,320Learn Microsoft Office 2019
-
$450$356 -
$500深度學習電腦視覺實戰 捲積神經網絡、Python 、TensorFlow和Kivy
-
$1,900$1,805 -
$1,901Practical Deep Learning: A Python-Based Introduction
-
$4,200$3,990 -
$2,622Practical Machine Learning for Computer Vision: End-To-End Machine Learning for Images (Paperback)
-
$2,233$2,115 -
$780$616 -
$1,200$948 -
$1,755Learn Three.js : Program 3D animations and visualizations for the web with JavaScript and WebGL, 4/e (Paperback)
-
$780$616 -
$630$498 -
$2,100$1,995 -
$720$562 -
$520$411 -
$780$616 -
$800$632 -
$720$562 -
$880$695
商品描述
Build deep learning and computer vision systems using Python, TensorFlow, Keras, OpenCV, and more, right within the familiar environment of Microsoft Windows. The book starts with an introduction to tools for deep learning and computer vision tasks followed by instructions to install, configure, and troubleshoot them. Here, you will learn how Python can help you build deep learning models on Windows.
Moving forward, you will build a deep learning model and understand the internal-workings of a convolutional neural network on Windows. Further, you will go through different ways to visualize the internal-workings of deep learning models along with an understanding of transfer learning where you will learn how to build model architecture and use data augmentations. Next, you will manage and train deep learning models on Windows before deploying your application as a web application. You'll also do some simple image processing and work with computer vision options that will help you build various applications with deep learning. Finally, you will use generative adversarial networks along with reinforcement learning.After reading Deep Learning on Windows, you will be able to design deep learning models and web applications on the Windows operating system.
What You Will Learn
- Understand the basics of Deep Learning and its history Get Deep Learning tools working on Microsoft Windows
- Understand the internal-workings of Deep Learning models by using model visualization techniques, such as the built-in plot_model function of Keras and third-party visualization tools
- Understand Transfer Learning and how to utilize it to tackle small datasets
- Build robust training scripts to handle long-running training jobs
- Convert your Deep Learning model into a web application
- Generate handwritten digits and human faces with DCGAN (Deep Convolutional Generative Adversarial Network)
- Understand the basics of Reinforcement Learning
Who This Book Is For
AI developers and enthusiasts wanting to work on the Windows platform.商品描述(中文翻譯)
建立深度學習和計算機視覺系統,使用 Python、TensorFlow、Keras、OpenCV 等工具,並在熟悉的 Microsoft Windows 環境中進行。本書首先介紹深度學習和計算機視覺任務的工具,接著提供安裝、配置和故障排除的指導。在這裡,您將學習如何在 Windows 上使用 Python 建立深度學習模型。
接下來,您將建立一個深度學習模型,並了解卷積神經網絡的內部運作。進一步地,您將學習不同的方式來可視化深度學習模型的內部運作,並了解遷移學習,學習如何建立模型架構並使用數據增強。接下來,您將在 Windows 上管理和訓練深度學習模型,然後將您的應用程序部署為網絡應用程序。您還將進行一些簡單的圖像處理,並使用計算機視覺選項,幫助您建立各種深度學習應用程序。最後,您將使用生成對抗網絡(Generative Adversarial Networks)和強化學習。
在閱讀《Deep Learning on Windows》後,您將能夠在 Windows 操作系統上設計深度學習模型和網絡應用程序。
您將學到的內容:
- 了解深度學習的基本概念及其歷史
- 在 Microsoft Windows 上使深度學習工具運作
- 通過使用模型可視化技術(如 Keras 的內建 plot_model 函數和第三方可視化工具)了解深度學習模型的內部運作
- 了解遷移學習及如何利用它來處理小型數據集
- 建立穩健的訓練腳本以處理長時間運行的訓練任務
- 將您的深度學習模型轉換為網絡應用程序
- 使用 DCGAN(深度卷積生成對抗網絡)生成手寫數字和人臉
- 了解強化學習的基本概念
本書適合對象:
希望在 Windows 平台上工作的 AI 開發者和愛好者。
作者簡介
Thimira Amaratunga is an Inventor, a Senior Software Architect at Pearson PLC Sri Lanka with over 12 years of industry experience, and a researcher in AI, Machine Learning, and Deep Learning in Education and Computer Vision domains.
Thimira holds a Master of Science in Computer Science with a Bachelor's degree in Information Technology from the University of Colombo, Sri Lanka. He has filed three patents to date, in the fields of dynamic neural networks and semantics for online learning platforms. Before this, Thimira has published two books on deep learning - 'Build Deeper: The Deep Learning Beginners' Guide' and 'Build Deeper: The Path to Deep Learning'.
Thimira is also the author of Codes of Interest (www.codesofinterest.com), a portal for deep learning and computer vision knowledge, covering everything from concepts to step-by-step tutorials.
LinkedIn: www.linkedin.com/in/thimira-amaratunga
作者簡介(中文翻譯)
Thimira Amaratunga 是一位發明家,擔任斯里蘭卡 Pearson PLC 的高級軟體架構師,擁有超過 12 年的行業經驗,並且是人工智慧、機器學習和深度學習在教育及計算機視覺領域的研究者。
Thimira 擁有斯里蘭卡科倫坡大學的計算機科學碩士學位,以及資訊科技學士學位。至今,他已在動態神經網絡和在線學習平台的語義領域申請了三項專利。在此之前,Thimira 已出版兩本關於深度學習的書籍 - 《Build Deeper: The Deep Learning Beginners' Guide》和《Build Deeper: The Path to Deep Learning》。
Thimira 也是 Codes of Interest (www.codesofinterest.com) 的作者,這是一個涵蓋深度學習和計算機視覺知識的門戶網站,內容從概念到逐步教程應有盡有。
LinkedIn: www.linkedin.com/in/thimira-amaratunga