Building Computer Vision Applications Using Artificial Neural Networks: With Step-By-Step Examples in Opencv and Tensorflow with Python
暫譯: 使用人工神經網絡構建計算機視覺應用:包含使用 Python 的 OpenCV 和 TensorFlow 的逐步範例
Ansari, Shamshad
- 出版商: Apress
- 出版日期: 2020-07-16
- 售價: $1,750
- 貴賓價: 9.5 折 $1,663
- 語言: 英文
- 頁數: 451
- 裝訂: Quality Paper - also called trade paper
- ISBN: 148425886X
- ISBN-13: 9781484258866
-
相關分類:
影像辨識 Image-recognition、Python、程式語言、DeepLearning、TensorFlow、Computer Vision
-
相關翻譯:
計算機視覺應用構建:OpenCV 與 TensorFlow 實例 (簡中版)
立即出貨 (庫存=1)
買這商品的人也買了...
-
$505Processing 編程學習指南(原書第2版)
-
$3,980$3,781 -
$2,210$2,100 -
$680$646 -
$1,750$1,663 -
$450$356 -
$690$545 -
$1,929$1,827 -
$407Java 從入門到精通, 6/e
-
$4,200$3,990 -
$500$395 -
$2,384Practical Machine Learning for Computer Vision: End-To-End Machine Learning for Images (Paperback)
-
$1,840AI and Machine Learning for On-Device Development: A Programmer's Guide
-
$1,900$1,805 -
$2,300$2,185 -
$539$512 -
$1,770$1,682 -
$1,200$948 -
$1,950$1,853 -
$780$616 -
$630$498 -
$2,100$1,995 -
$720$562 -
$520$411 -
$780$616
相關主題
商品描述
Apply computer vision and machine learning concepts in developing business and industrial applications using a practical, step-by-step approach.
The book comprises four main sections starting with setting up your programming environment and configuring your computer with all the prerequisites to run the code examples. Section 1 covers the basics of image and video processing with code examples of how to manipulate and extract useful information from the images. You will mainly use OpenCV with Python to work with examples in this section.
Section 2 describes machine learning and neural network concepts as applied to computer vision. You will learn different algorithms of the neural network, such as convolutional neural network (CNN), region-based convolutional neural network (R-CNN), and YOLO. In this section, you will also learn how to train, tune, and manage neural networks for computer vision. Section 3 provides step-by-step examples of developing business and industrial applications, such as facial recognition in video surveillance and surface defect detection in manufacturing.
The final section is about training neural networks involving a large number of images on cloud infrastructure, such as Amazon AWS, Google Cloud Platform, and Microsoft Azure. It walks you through the process of training distributed neural networks for computer vision on GPU-based cloud infrastructure. By the time you finish reading Building Computer Vision Applications Using Artificial Neural Networks and working through the code examples, you will have developed some real-world use cases of computer vision with deep learning.
What You Will Learn
- Employ image processing, manipulation, and feature extraction techniques
- Work with various deep learning algorithms for computer vision
- Train, manage, and tune hyperparameters of CNNs and object detection models, such as R-CNN, SSD, and YOLO
- Build neural network models using Keras and TensorFlow
- Discover best practices when implementing computer vision applications in business and industry
- Train distributed models on GPU-based cloud infrastructure
Who This Book Is For
Data scientists, analysts, and machine learning and software engineering professionals with Python programming knowledge.
商品描述(中文翻譯)
應用計算機視覺和機器學習概念,使用實用的逐步方法開發商業和工業應用。
本書分為四個主要部分,首先是設置您的編程環境並配置計算機,以運行代碼示例所需的所有先決條件。第一部分涵蓋圖像和視頻處理的基本知識,並提供如何操作和提取圖像中有用信息的代碼示例。在這一部分中,您將主要使用 OpenCV 和 Python 來處理示例。
第二部分描述了應用於計算機視覺的機器學習和神經網絡概念。您將學習神經網絡的不同算法,例如卷積神經網絡(CNN)、基於區域的卷積神經網絡(R-CNN)和 YOLO。在這一部分中,您還將學習如何訓練、調整和管理計算機視覺的神經網絡。第三部分提供了開發商業和工業應用的逐步示例,例如視頻監控中的人臉識別和製造中的表面缺陷檢測。
最後一部分涉及在雲基礎設施上訓練涉及大量圖像的神經網絡,例如 Amazon AWS、Google Cloud Platform 和 Microsoft Azure。它將引導您完成在基於 GPU 的雲基礎設施上訓練分佈式神經網絡以進行計算機視覺的過程。當您閱讀完《使用人工神經網絡構建計算機視覺應用》並完成代碼示例時,您將開發出一些基於深度學習的計算機視覺的實際應用案例。
您將學到的內容:
- 使用圖像處理、操作和特徵提取技術
- 使用各種深度學習算法進行計算機視覺
- 訓練、管理和調整 CNN 和物體檢測模型(如 R-CNN、SSD 和 YOLO)的超參數
- 使用 Keras 和 TensorFlow 構建神經網絡模型
- 在商業和工業中實施計算機視覺應用的最佳實踐
- 在基於 GPU 的雲基礎設施上訓練分佈式模型
本書適合對象:
具備 Python 編程知識的數據科學家、分析師以及機器學習和軟體工程專業人士。
作者簡介
Shamshad (Sam) Ansari works as President and CEO of Accure Inc, an artificial intelligence automation company that he founded. He has raised Accure from startup to a sustainable business by building a winning team and acquiring customers from across the globe. He has technical expertise in the area of computer vision, machine learning, AI, cognitive science, NLP, and big data. He architected, designed, and developed the Momentum platform that automates AI solution development. He is an inventor and has four US patents in the area of AI and cognitive computing.
Shamshad worked as a senior software engineer with IBM, VP of engineering with Orbit Solutions, and as principal architect and director of engineering with Apixio.
作者簡介(中文翻譯)
Shamshad (Sam) Ansari 擔任 Accure Inc 的總裁兼執行長,這是一家他創立的人工智慧自動化公司。他將 Accure 從初創企業發展為可持續的商業模式,透過建立一支成功的團隊並從全球各地獲取客戶。他在計算機視覺、機器學習、人工智慧、認知科學、自然語言處理 (NLP) 和大數據等領域擁有技術專長。他架構、設計並開發了 Momentum 平台,該平台自動化人工智慧解決方案的開發。他是一位發明家,擁有四項美國專利,涉及人工智慧和認知計算領域。
Shamshad 曾在 IBM 擔任高級軟體工程師,在 Orbit Solutions 擔任工程副總裁,以及在 Apixio 擔任首席架構師和工程總監。