Deep Learning with Python: Learn Best Practices of Deep Learning Models with Pytorch
暫譯: 使用 Python 的深度學習:學習 Pytorch 深度學習模型的最佳實踐

Ketkar, Nihkil

  • 出版商: Apress
  • 出版日期: 2021-04-10
  • 售價: $1,510
  • 貴賓價: 9.5$1,435
  • 語言: 英文
  • 頁數: 271
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 1484253639
  • ISBN-13: 9781484253632
  • 相關分類: Python程式語言DeepLearning
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

Master the practical aspects of implementing deep learning solutions with PyTorch, using a hands-on approach to understanding both theory and practice. This new edition will prepare you for applying deep learning to real world problems with a sound theoretical foundation and practical know-how with PyTorch, a platform developed by Facebook's Artificial Intelligence Research Group.
You'll start with a perspective on how and why deep learning with PyTorch has emerged as an path-breaking framework with a set of tools and techniques to solve real-world problems. Next, the book will ground you with the mathematical fundamentals of linear algebra, vector calculus, probability and optimization. Having established this foundation, you'll move on to key components and functionality of PyTorch including layers, loss functions and optimization algorithms.
You'll also gain an understanding of Graphical Processing Unit (GPU) based computation, which is essential for training deep learning models. All the key architectures in deep learning are covered, including feedforward networks, convolution neural networks, recurrent neural networks, long short-term memory networks, autoencoders and generative adversarial networks. Backed by a number of tricks of the trade for training and optimizing deep learning models, this edition of Deep Learning with Python explains the best practices in taking these models to production with PyTorch.
What You'll Learn

  • Review machine learning fundamentals such as overfitting, underfitting, and regularization.
  • Understand deep learning fundamentals such as feed-forward networks, convolution neural networks, recurrent neural networks, automatic differentiation, and stochastic gradient descent.
  • Apply in-depth linear algebra with PyTorch
  • Explore PyTorch fundamentals and its building blocks
  • Work with tuning and optimizing models

Who This Book Is For
Beginners with a working knowledge of Python who want to understand Deep Learning in a practical, hands-on manner.

商品描述(中文翻譯)

掌握使用 PyTorch 實現深度學習解決方案的實用方面,透過實作方式理解理論與實踐。本書的新版本將為您提供堅實的理論基礎和實用知識,以便將深度學習應用於現實世界的問題,這是由 Facebook 的人工智慧研究小組開發的平台 PyTorch。

您將首先了解為何以及如何使用 PyTorch 的深度學習成為一個突破性的框架,並提供一套解決現實問題的工具和技術。接下來,本書將為您打下線性代數、向量微積分、機率和優化的數學基礎。在建立這個基礎後,您將進一步了解 PyTorch 的關鍵組件和功能,包括層、損失函數和優化算法。

您還將了解基於圖形處理單元 (GPU) 的計算,這對於訓練深度學習模型至關重要。本書涵蓋了深度學習中的所有關鍵架構,包括前饋網絡、卷積神經網絡、遞迴神經網絡、長短期記憶網絡、自編碼器和生成對抗網絡。這一版的《Deep Learning with Python》提供了許多訓練和優化深度學習模型的技巧,解釋了如何將這些模型以最佳實踐推向生產環境。

您將學到什麼


  • 回顧機器學習的基本概念,如過擬合、欠擬合和正則化。

  • 理解深度學習的基本概念,如前饋網絡、卷積神經網絡、遞迴神經網絡、自動微分和隨機梯度下降。

  • 深入應用線性代數與 PyTorch。

  • 探索 PyTorch 的基本概念及其組成部分。

  • 調整和優化模型的工作。

本書適合誰閱讀

對 Python 有基本了解的初學者,想以實用、動手的方式理解深度學習。

作者簡介

Nikhil S. Ketkar currently leads the Machine Learning Platform team at Flipkart, India's largest e-commerce company. He received his Ph.D. from Washington State University. Following that he conducted postdoctoral research at University of North Carolina at Charlotte, which was followed by a brief stint in high frequency trading at Transmaket in Chicago. More recently he led the data mining team in Guavus, a startup doing big data analytics in the telecom domain and Indix, a startup doing data science in the e-commerce domain. His research interests include machine learning and graph theory.

作者簡介(中文翻譯)

Nikhil S. Ketkar 目前在印度最大的電子商務公司 Flipkart 領導機器學習平台團隊。他在華盛頓州立大學獲得博士學位。隨後,他在北卡羅來納州夏洛特大學進行了博士後研究,之後在芝加哥的 Transmaket 從事高頻交易的短暫工作。最近,他在 Guavus 領導數據挖掘團隊,該公司是一家專注於電信領域的大數據分析初創公司,並在 Indix 擔任數據科學的領導,該公司專注於電子商務領域。 他的研究興趣包括機器學習和圖論。