Building Machine Learning and Deep Learning Models on Google Cloud Platform: A Comprehensive Guide for Beginners
暫譯: 在 Google Cloud Platform 上構建機器學習與深度學習模型:初學者的全面指南
Bisong, Ekaba Ononse
- 出版商: Apress
- 出版日期: 2019-09-28
- 定價: $1,575
- 售價: 8.0 折 $1,260
- 語言: 英文
- 頁數: 580
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1484244699
- ISBN-13: 9781484244692
-
相關分類:
Google Cloud、Machine Learning、DeepLearning
立即出貨 (庫存=1)
買這商品的人也買了...
-
$1,960Reinforcement Learning: With Open AI, TensorFlow and Keras Using Python
-
$1,782Think Julia: How to Think Like a Computer Scientist
-
$3,7813D Shape Analysis: Fundamentals, Theory, and Applications
-
$1,260Applied Reinforcement Learning with Python: With Openai Gym, Tensorflow, and Keras
-
$505白話強化學習與 PyTorch
-
$356決策用強化與系統性機器學習
-
$2,079Google Bigquery: The Definitive Guide: Data Warehousing, Analytics, and Machine Learning at Scale (Paperback)
-
$2,380$2,261 -
$2,146Introduction to Algorithms, 4/e (Hardcover)
-
$2,520Hands-On Machine Learning with Scikit-Learn, Keras, and Tensorflow: Concepts, Tools, and Techniques to Build Intelligent Systems, 3/e (Paperback)
相關主題
商品描述
So you want to build learning models from the ground up, but find the rapidly changing world of machine learning and deep learning overwhelming and confusing, and you don't have a clue where to start. This book is your "one-stop shop" to understand the theoretical foundations and the practical steps to leverage machine learning and deep learning.
You will learn about machine learning tools and techniques used to predict or classify events based on a set of interactions between variables known as features or attributes in a particular dataset. And you will learn how deep learning extends machine learning algorithms of neural networks for learning complex tasks which are difficult for computers to perform such as recognizing faces and understanding languages. And you will know how the cloud is made up large sets of computers networked together in groups called data centers that are distributed across geographic locations and managed by companies such as Google, Microsoft, Amazon, and IBM and made available for public use by enterprises and personal users.
This book is a beginner's comprehensive guide for building learning models to address complex use cases using machine learning and deep learning principles and techniques while leveraging the computational resources and artificial intelligence (AI) capabilities of the Google Cloud Platform at a reasonable cost.
Building Machine Learning and Deep Learning Models on Google Cloud Platform is divided into six parts that cover the foundations of machine learning and deep learning, the concept of data science and cloud services, programming for data science and machine learning and deep learning using the Python stack, Google Cloud Platform infrastructure and products, and an end-to-end machine/deep learning project on the Google Cloud Platform.
What You'll Learn
- Understand the principles and fundamentals of machine learning and deep learning, the algorithms, how to use them, when to use them, and how to interpret your results
- Know the programming concepts relevant to machine and deep learning design and development using the Python stack
- Build and interpret machine and deep learning models
- Use Google Cloud Platform tools and services to develop and deploy machine learning and deep learning products
- Be aware of the different facets and design choices to consider when modeling a learning problem
- Productionalize machine learning models into software products
Who This Book Is For
Beginning software application developers. Experts in machine learning and deep learning design and modeling can benefit from this book as a refresher.
商品描述(中文翻譯)
所以你想從零開始建立學習模型,但發現快速變化的機器學習和深度學習世界讓人感到不知所措且困惑,並且你不知道從何開始。本書是你理解理論基礎和實踐步驟以利用機器學習和深度學習的「一站式商店」。
你將學習用於根據一組稱為特徵或屬性的變數之間的互動來預測或分類事件的機器學習工具和技術。你還將了解深度學習如何擴展神經網絡的機器學習算法,以學習對計算機來說難以執行的複雜任務,例如識別面孔和理解語言。你將知道雲端是由大量計算機組成的,這些計算機以稱為數據中心的群組互相連接,分佈在不同的地理位置,由如 Google、Microsoft、Amazon 和 IBM 等公司管理,並提供給企業和個人用戶使用。
本書是針對初學者的綜合指南,旨在利用機器學習和深度學習原則及技術來解決複雜的使用案例,同時以合理的成本利用 Google Cloud Platform 的計算資源和人工智慧 (AI) 能力。
在 Google Cloud Platform 上建立機器學習和深度學習模型 分為六個部分,涵蓋機器學習和深度學習的基礎、數據科學和雲服務的概念、使用 Python 堆疊進行數據科學及機器學習和深度學習的編程、Google Cloud Platform 的基礎設施和產品,以及在 Google Cloud Platform 上的端到端機器/深度學習項目。
你將學到什麼
- 理解機器學習和深度學習的原則和基本概念、算法、如何使用它們、何時使用它們,以及如何解釋你的結果
- 了解與機器和深度學習設計和開發相關的編程概念,使用 Python 堆疊
- 建立和解釋機器和深度學習模型
- 使用 Google Cloud Platform 工具和服務來開發和部署機器學習和深度學習產品
- 了解在建模學習問題時需要考慮的不同面向和設計選擇
- 將機器學習模型生產化為軟體產品
本書適合誰閱讀
初學的軟體應用開發者。機器學習和深度學習設計及建模的專家也可以將本書作為複習資料。
作者簡介
Ekaba Bisong is a data scientist at Pythian, a big data analytics company headquartered in Ottawa, Canada. He is also a master degree graduate student in the School of Computer Science at Carleton University with a research focus on learning systems (encompassing learning automata and reinforcement learning), machine learning, and deep learning. He is a Google Certified Professional Data Engineer. Teaching is his passion, and this book reflects his teaching philosophy of imparting knowledge in a way that incrementally takes the learner from the point of knowing nothing to the place where they can function as experts in the subject matter.
作者簡介(中文翻譯)
Ekaba Bisong 是位於加拿大渥太華的大數據分析公司 Pythian 的數據科學家。他同時也是卡爾頓大學計算機科學學院的碩士研究生,研究重點為學習系統(包括學習自動機和強化學習)、機器學習和深度學習。他是 Google 認證的專業數據工程師。教學是他的熱情,這本書反映了他的教學理念,即以逐步的方式傳授知識,將學習者從一無所知的起點帶到能夠在該領域中作為專家的地步。