Learn Computer Vision Using OpenCV: With Deep Learning CNNs and RNNs
暫譯: 使用 OpenCV 學習電腦視覺:結合深度學習 CNN 與 RNN
Gollapudi, Sunila
- 出版商: Apress
- 出版日期: 2019-04-27
- 售價: $2,050
- 貴賓價: 9.5 折 $1,948
- 語言: 英文
- 頁數: 151
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1484242602
- ISBN-13: 9781484242605
-
相關分類:
影像辨識 Image-recognition、DeepLearning、Computer Vision
海外代購書籍(需單獨結帳)
買這商品的人也買了...
-
$520$494 -
$4,160$3,952 -
$250OpenCV 3 計算機視覺 : Python 語言實現, 2/e (Learning OpenCV 3 Computer Vision with Python, 2/e)
-
$177Modbus 軟件開發實戰指南
-
$580$458 -
$590$460 -
$2,052Head First Agile: A Brain-Friendly Guide to Agile and the PMI-ACP Certification
-
$2,010$1,910 -
$301OpenCV Android 開發實戰
-
$650$585 -
$352FFmpeg 從入門到精通
-
$500$330 -
$1,220$1,159 -
$1,000$790 -
$650$553 -
$454Android 移動開發案例課堂
-
$1,840$1,748 -
$1,250$1,188 -
$650$553 -
$980$774 -
$480$379 -
$654$621 -
$352機器視覺從入門到提高
-
$400$380 -
$299$284
商品描述
Build practical applications of computer vision using the OpenCV library with Python. This book discusses different facets of computer vision such as image and object detection, tracking and motion analysis and their applications with examples.
The author starts with an introduction to computer vision followed by setting up OpenCV from scratch using Python. The next section discusses specialized image processing and segmentation and how images are stored and processed by a computer. This involves pattern recognition and image tagging using the OpenCV library. Next, you'll work with object detection, video storage and interpretation, and human detection using OpenCV. Tracking and motion is also discussed in detail. The book also discusses creating complex deep learning models with CNN and RNN. The author finally concludes with recent applications and trends in computer vision.
After reading this book, you will be able to understand and implement computer vision and its applications with OpenCV using Python. You will also be able to create deep learning models with CNN and RNN and understand how these cutting-edge deep learning architectures work.
What You Will Learn
- Understand what computer vision is, and its overall application in intelligent automation systems
- Discover the deep learning techniques required to build computer vision applications
- Build complex computer vision applications using the latest techniques in OpenCV, Python, and NumPy
- Create practical applications and implementations such as face detection and recognition, handwriting recognition, object detection, and tracking and motion analysis
Who This Book Is ForThose who have a basic understanding of machine learning and Python and are looking to learn computer vision and its applications.
商品描述(中文翻譯)
使用 Python 和 OpenCV 函式庫構建實用的電腦視覺應用。本書討論了電腦視覺的不同面向,例如圖像和物體檢測、追蹤和運動分析及其應用,並提供了範例。
作者首先介紹電腦視覺,接著從零開始設置 OpenCV 和 Python。下一部分討論專門的圖像處理和分割,以及圖像如何被計算機存儲和處理。這涉及到使用 OpenCV 函式庫的模式識別和圖像標記。接下來,您將學習使用 OpenCV 進行物體檢測、視頻存儲和解釋,以及人類檢測。追蹤和運動的內容也會詳細討論。本書還討論了使用 CNN 和 RNN 創建複雜的深度學習模型。作者最後總結了電腦視覺的最新應用和趨勢。
閱讀完本書後,您將能夠理解並實現電腦視覺及其在 OpenCV 中的應用,使用 Python 創建深度學習模型,並理解這些尖端深度學習架構的運作方式。
您將學到什麼
- 了解什麼是電腦視覺及其在智能自動化系統中的整體應用
- 發現構建電腦視覺應用所需的深度學習技術
- 使用 OpenCV、Python 和 NumPy 中的最新技術構建複雜的電腦視覺應用
- 創建實用的應用和實現,例如人臉檢測和識別、手寫識別、物體檢測以及追蹤和運動分析
本書適合誰閱讀對機器學習和 Python 有基本了解,並希望學習電腦視覺及其應用的人士。
作者簡介
Sunila Gollapudi has over 17 years of experience in developing, designing and architecting data-driven solutions with a focus on the banking and financial services sector. She is currently working at Broadridge, India as vice president. She's played various roles as chief architect, big data and AI evangelist, and mentor.
She has been a speaker at various conferences and meetups on Java and big data technologies. Her current big data and data science expertise includes Hadoop, Greenplum, MarkLogic, GemFire, ElasticSearch, Apache Spark, Splunk, R, Julia, Python (scikit-learn), Weka, MADlib, Apache Mahout, and advanced analytics techniques such as deep learning, computer vision, reinforcement, and ensemble learning.
作者簡介(中文翻譯)
Sunila Gollapudi 擁有超過 17 年的經驗,專注於開發、設計和架構以數據為驅動的解決方案,特別是在銀行和金融服務領域。她目前在印度的 Broadridge 擔任副總裁。她曾擔任首席架構師、大數據和人工智慧的倡導者,以及導師等多個角色。
她曾在多個會議和聚會上擔任演講者,主題涵蓋 Java 和大數據技術。她目前在大數據和數據科學方面的專業知識包括 Hadoop、Greenplum、MarkLogic、GemFire、ElasticSearch、Apache Spark、Splunk、R、Julia、Python(scikit-learn)、Weka、MADlib、Apache Mahout,以及深度學習、計算機視覺、強化學習和集成學習等先進分析技術。