Learn Data Analysis with Python: Lessons in Coding
暫譯: 用 Python 學習數據分析:編程課程
A.J. Henley, Dave Wolf
- 出版商: Apress
- 出版日期: 2018-02-23
- 售價: $1,720
- 貴賓價: 9.5 折 $1,634
- 語言: 英文
- 頁數: 97
- 裝訂: Paperback
- ISBN: 1484234855
- ISBN-13: 9781484234853
-
相關分類:
Python、程式語言、Data Science
海外代購書籍(需單獨結帳)
商品描述
Get started using Python in data analysis with this compact practical guide. This book includes three exercises and a case study on getting data in and out of Python code in the right format. Learn Data Analysis with Python also helps you discover meaning in the data using analysis and shows you how to visualize it.
Each lesson is, as much as possible, self-contained to allow you to dip in and out of the examples as your needs dictate. If you are already using Python for data analysis, you will find a number of things that you wish you knew how to do in Python. You can then take these techniques and apply them directly to your own projects.
If you aren’t using Python for data analysis, this book takes you through the basics at the beginning to give you a solid foundation in the topic. As you work your way through the book you will have a better of idea of how to use Python for data analysis when you are finished.
What You Will Learn
- Get data into and out of Python code
- Prepare the data and its format
- Find the meaning of the data
- Visualize the data using iPython
Who This Book Is For
Those who want to learn data analysis using Python. Some experience with Python is recommended but not required, as is some prior experience with data analysis or data science.
商品描述(中文翻譯)
開始使用 Python 進行資料分析,這本簡明實用的指南將幫助你入門。本書包含三個練習和一個案例研究,介紹如何將資料以正確的格式進出 Python 代碼。《Learn Data Analysis with Python》還幫助你透過分析發現資料的意義,並展示如何將其視覺化。
每一課程盡可能是自成一體,讓你可以根據需要隨時進出範例。如果你已經在使用 Python 進行資料分析,你會發現許多你希望能在 Python 中做到的事情。然後你可以將這些技術直接應用到自己的專案中。
如果你尚未使用 Python 進行資料分析,本書在一開始會帶你了解基礎知識,為你在這個主題上打下堅實的基礎。當你完成本書的學習後,你將對如何使用 Python 進行資料分析有更清晰的了解。
**你將學到的內容**
- 將資料進出 Python 代碼
- 準備資料及其格式
- 找出資料的意義
- 使用 iPython 進行資料視覺化
**本書適合誰**
本書適合那些想要學習使用 Python 進行資料分析的人。建議具備一些 Python 的經驗,但不是必需的,對資料分析或資料科學有一些先前經驗也是有幫助的。