Predictive Analytics with Microsoft Azure Machine Learning, 2/e (Paperback)
暫譯: 使用 Microsoft Azure Machine Learning 的預測分析,第 2 版 (平裝)

Valentine Fontama

買這商品的人也買了...

商品描述

Predictive Analytics with Microsoft Azure Machine Learning, Second Edition is a practical tutorial introduction to the field of data science and machine learning, with a focus on building and deploying predictive models. The book provides a thorough overview of the Microsoft Azure Machine Learning service released for general availability on February 18th, 2015 with practical guidance for building recommenders, propensity models, and churn and predictive maintenance models.

The authors use task oriented descriptions and concrete end-to-end examples to ensure that the reader can immediately begin using this new service. The book describes all aspects of the service from data ingress to applying machine learning, evaluating the models, and deploying them as web services.

Learn how you can quickly build and deploy sophisticated predictive models with the new Azure Machine Learning from Microsoft.

What’s New in the Second Edition?

Five new chapters have been added with practical detailed coverage of:

  • Python Integration – a new feature announced February 2015
  • Data preparation and feature selection
  • Data visualization with Power BI
  • Recommendation engines
  • Selling your models on Azure Marketplace

What you’ll learn

  • A structured introduction to Data Science and its best practices
  • An introduction to the new Microsoft Azure Machine Learning service, explaining how to effectively build and deploy predictive models
  • Practical skills such as how to solve typical predictive analytics problems like propensity modeling, churn analysis, product recommendation, and visualization with Power BI
  • A practical way to sell your own predictive models on the Azure Marketplace

Who this book is for

Data Scientists, Business Analysts, BI Professionals and Developers who are interested in expanding their repertoire of skill applied to machine learning and predictive analytics, as well as anyone interested in an in-depth explanation of the Microsoft Azure Machine Learning service through practical tasks and concrete applications.

The reader is assumed to have basic knowledge of statistics and data analysis, but not deep experience in data science or data mining. Advanced programming skills are not required, although some experience with R programming would prove very useful.

Table of Contents

Part 1: Introducing Data Science and Microsoft Azure Machine Learning

1. Introduction to Data Science

2. Introducing Microsoft Azure Machine Learning

3. Data Preparation

4. Integration with R

Part 2: Statistical and Machine Learning Algorithms

5. Integration with Python

Part 3: Practical applications

6. Introduction to Statistical and Machine Learning Algorithms

7. Building Customer Propensity Models

8. Visualizing Your Models with Power BI

9. Building Churn Models

10. Customer Segmentation Models

11. Building Predictive Maintenance Models

12. Recommendation Systems

13. Consuming and Publishing Models on Azure Marketplace

14. Cortana Analytics

商品描述(中文翻譯)

使用 Microsoft Azure 機器學習的預測分析(第二版)》是一本實用的數據科學和機器學習入門教程,重點在於構建和部署預測模型。本書提供了對於於 2015 年 2 月 18 日正式發布的 Microsoft Azure 機器學習服務的全面概述,並提供了構建推薦系統、傾向模型、流失和預測維護模型的實用指導。

作者使用以任務為導向的描述和具體的端到端範例,確保讀者能立即開始使用這項新服務。本書描述了該服務的所有方面,從數據進入到應用機器學習、評估模型以及將其部署為網絡服務。

了解如何快速構建和部署複雜的預測模型,使用 Microsoft 的新 Azure 機器學習。

第二版的新內容是什麼?

新增了五個章節,詳細涵蓋以下主題:
- Python 整合 – 2015 年 2 月宣布的新功能
- 數據準備和特徵選擇
- 使用 Power BI 進行數據可視化
- 推薦引擎
- 在 Azure Marketplace 上銷售您的模型

您將學到什麼

- 結構化的數據科學介紹及其最佳實踐
- 新的 Microsoft Azure 機器學習服務介紹,解釋如何有效地構建和部署預測模型
- 實用技能,例如如何解決典型的預測分析問題,如傾向建模、流失分析、產品推薦和使用 Power BI 進行可視化
- 在 Azure Marketplace 上銷售您自己的預測模型的實用方法

本書適合誰

本書適合數據科學家、商業分析師、BI 專業人士和開發人員,他們有興趣擴展應用於機器學習和預測分析的技能,以及任何對通過實際任務和具體應用深入了解 Microsoft Azure 機器學習服務感興趣的人。

假設讀者具備基本的統計和數據分析知識,但不需要在數據科學或數據挖掘方面有深入的經驗。雖然不需要高級編程技能,但對 R 編程有一些經驗將非常有用。

目錄

第一部分:介紹數據科學和 Microsoft Azure 機器學習
1. 數據科學介紹
2. 介紹 Microsoft Azure 機器學習
3. 數據準備
4. 與 R 的整合

第二部分:統計和機器學習算法
5. 與 Python 的整合

第三部分:實用應用
6. 統計和機器學習算法介紹
7. 構建客戶傾向模型
8. 使用 Power BI 可視化您的模型
9. 構建流失模型
10. 客戶細分模型
11. 構建預測維護模型
12. 推薦系統
13. 在 Azure Marketplace 上消費和發布模型
14. Cortana Analytics