Network Anomaly Detection: A Machine Learning Perspective (Hardcover)
暫譯: 網路異常偵測:機器學習的視角 (精裝版)
Dhruba Kumar Bhattacharyya, Jugal Kumar Kalita
- 出版商: CRC
- 出版日期: 2013-06-18
- 售價: $4,870
- 貴賓價: 9.5 折 $4,627
- 語言: 英文
- 頁數: 366
- 裝訂: Hardcover
- ISBN: 1466582081
- ISBN-13: 9781466582088
-
相關分類:
Machine Learning
海外代購書籍(需單獨結帳)
買這商品的人也買了...
-
$880$695 -
$620$490 -
$800$632 -
$460$363 -
$900$855 -
$950$751 -
$1,958Digital Evidence and Computer Crime, 3/e : Forensic Science, Computers, and the Internet (Hardcover)
-
$680$544 -
$480$408 -
$580$452 -
$1,130$961 -
$680$537 -
$360$284 -
$520$343 -
$450$356 -
$560$442 -
$880$695 -
$349$297 -
$360$281 -
$520$411 -
$450$297 -
$580$458 -
$940$700 -
$320$250 -
$2,090$1,986
相關主題
商品描述
With the rapid rise in the ubiquity and sophistication of Internet technology and the accompanying growth in the number of network attacks, network intrusion detection has become increasingly important. Anomaly-based network intrusion detection refers to finding exceptional or nonconforming patterns in network traffic data compared to normal behavior. Finding these anomalies has extensive applications in areas such as cyber security, credit card and insurance fraud detection, and military surveillance for enemy activities. Network Anomaly Detection: A Machine Learning Perspective presents machine learning techniques in depth to help you more effectively detect and counter network intrusion.
In this book, you’ll learn about:
- Network anomalies and vulnerabilities at various layers
- The pros and cons of various machine learning techniques and algorithms
- A taxonomy of attacks based on their characteristics and behavior
- Feature selection algorithms
- How to assess the accuracy, performance, completeness, timeliness, stability, interoperability, reliability, and other dynamic aspects of a network anomaly detection system
- Practical tools for launching attacks, capturing packet or flow traffic, extracting features, detecting attacks, and evaluating detection performance
- Important unresolved issues and research challenges that need to be overcome to provide better protection for networks
Examining numerous attacks in detail, the authors look at the tools that intruders use and show how to use this knowledge to protect networks. The book also provides material for hands-on development, so that you can code on a testbed to implement detection methods toward the development of your own intrusion detection system. It offers a thorough introduction to the state of the art in network anomaly detection using machine learning approaches and systems.
商品描述(中文翻譯)
隨著網際網路技術的普及和複雜性迅速上升,以及網路攻擊數量的增加,網路入侵偵測變得越來越重要。基於異常的網路入侵偵測是指在網路流量數據中尋找與正常行為相比的異常或不符合的模式。發現這些異常在網路安全、信用卡和保險詐騙偵測以及軍事監視敵方活動等領域有廣泛的應用。《網路異常偵測:機器學習的視角》深入介紹了機器學習技術,幫助您更有效地偵測和應對網路入侵。
在本書中,您將學習到:
- 各層級的網路異常和漏洞
- 各種機器學習技術和演算法的優缺點
- 根據特徵和行為的攻擊分類法
- 特徵選擇演算法
- 如何評估網路異常偵測系統的準確性、性能、完整性、及時性、穩定性、互操作性、可靠性及其他動態方面
- 用於發動攻擊、捕獲封包或流量、提取特徵、偵測攻擊和評估偵測性能的實用工具
- 需要克服的重要未解決問題和研究挑戰,以提供更好的網路保護
作者詳細檢視了眾多攻擊,探討入侵者使用的工具,並展示如何利用這些知識來保護網路。本書還提供了實作開發的材料,讓您可以在測試環境中編碼,實現偵測方法,發展自己的入侵偵測系統。它提供了使用機器學習方法和系統進行網路異常偵測的最新技術的全面介紹。