Internet-Scale Pattern Recognition: New Techniques for Voluminous Data Sets and Data Clouds (Hardcover)
暫譯: 網際網路規模的模式識別:針對大量數據集和數據雲的新技術 (精裝版)
Anang Hudaya Muhamad Amin, Asad I. Khan, Benny B. Nasution
- 出版商: CRC
- 出版日期: 2012-11-20
- 售價: $2,980
- 貴賓價: 9.5 折 $2,831
- 語言: 英文
- 頁數: 197
- 裝訂: Hardcover
- ISBN: 146651096X
- ISBN-13: 9781466510968
-
相關分類:
大數據 Big-data、Machine Learning、雲端運算
-
其他版本:
Internet-Scale Pattern Recognition: New Techniques for Voluminous Data Sets and Data Clouds
立即出貨 (庫存=1)
相關主題
商品描述
For machine intelligence applications to work successfully, machines must perform reliably under variations of data and must be able to keep up with data streams. Internet-Scale Pattern Recognition: New Techniques for Voluminous Data Sets and Data Clouds unveils computational models that address performance and scalability to achieve higher levels of reliability. It explores different ways of implementing pattern recognition using machine intelligence.
Based on the authors’ research from the past 10 years, the text draws on concepts from pattern recognition, parallel processing, distributed systems, and data networks. It describes fundamental research on the scalability and performance of pattern recognition, addressing issues with existing pattern recognition schemes for Internet-scale data deployment. The authors review numerous approaches and introduce possible solutions to the scalability problem.
By presenting the concise body of knowledge required for reliable and scalable pattern recognition, this book shortens the learning curve and gives you valuable insight to make further innovations. It offers an extendable template for Internet-scale pattern recognition applications as well as guidance on the programming of large networks of devices.
商品描述(中文翻譯)
為了讓機器智慧應用成功運作,機器必須在數據變化下可靠地執行,並能夠跟上數據流。《網際網路規模的模式識別:針對大量數據集和數據雲的新技術》揭示了針對性能和可擴展性而設計的計算模型,以實現更高的可靠性。它探討了使用機器智慧實現模式識別的不同方法。
基於作者過去十年的研究,該文本借鑒了模式識別、平行處理、分散式系統和數據網絡的概念。它描述了有關模式識別的可擴展性和性能的基本研究,解決了現有模式識別方案在網際網路規模數據部署中的問題。作者回顧了多種方法並介紹了可行的可擴展性解決方案。
通過呈現可靠且可擴展的模式識別所需的簡明知識體系,本書縮短了學習曲線,並為您提供了有價值的見解,以便進一步創新。它提供了一個可擴展的模板,用於網際網路規模的模式識別應用,以及對大型設備網絡編程的指導。