An Introduction to Statistical Learning: With Applications in R (Hardcover)
暫譯: 統計學習導論:R語言應用實例
Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani
- 出版商: Springer
- 出版日期: 2017-09-01
- 定價: $2,800
- 售價: 6.0 折 $1,680
- 語言: 英文
- 頁數: 426
- 裝訂: Hardcover
- ISBN: 1461471370
- ISBN-13: 9781461471370
-
相關分類:
R 語言
-
相關翻譯:
統計學習導論 -- 基於 R應用 (簡中版)
-
其他版本:
An Introduction to Statistical Learning: With Applications in R, 2/e (Hardcover)
買這商品的人也買了...
-
Foundations of Statistical Natural Language Processing (Hardcover)$4,600$4,370 -
Pattern Recognition and Machine Learning (Hardcover)$4,210$4,000 -
大話設計模式$620$490 -
Speech and Language Processing, 2/e (IE-Paperback)$1,360$1,333 -
$3,150The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2/e (Hardcover) -
Information Visualization: Perception for Design, 3/e (Hardcover)$1,060$1,039 -
The Functional Art: An introduction to information graphics and visualization (Paperback)$1,850$1,813 -
R in a Nutshell, 2/e (Paperback)$1,995$1,890 -
Learning From Data (Hardcover)$1,200$1,176 -
深入淺出 HTML and CSS, 2/e (Head First HTML and CSS, 2/e)$880$695 -
$825Practical Data Science with R (Paperback) -
ASP.NET MVC 5 網站開發美學$780$616 -
精通 Python|運用簡單的套件進行現代運算 (Introducing Python: Modern Computing in Simple Packages)$780$616 -
完整學會 Git, GitHub, Git Server 的24堂課$360$284 -
資料科學的商業運用 (Data science for business)$680$537 -
Linear Algebra : with Applications, 9/e (IE-Paperback)$1,180$1,156 -
網站擷取|使用 Python (Web Scraping with Python: Collecting Data from the Modern Web)$580$458 -
今天不學機器學習,明天就被機器取代:從 Python 入手+演算法$590$502 -
超圖解 Arduino 互動設計入門, 3/e$680$578 -
Python 自動化的樂趣|搞定重複瑣碎 & 單調無聊的工作 (中文版) (Automate the Boring Stuff with Python: Practical Programming for Total Beginners)$500$425 -
深度學習快速入門 — 使用 TensorFlow (Getting started with TensorFlow)
$360$281 -
演算法技術手冊, 2/e (Algorithms in a Nutshell: A Practical Guide, 2/e)$580$458 -
TensorFlow + Keras 深度學習人工智慧實務應用$590$460 -
寫程式前就該懂的演算法 ─ 資料分析與程式設計人員必學的邏輯思考術 (Grokking Algorithms: An illustrated guide for programmers and other curious people)$390$308 -
Python Machine Learning: Machine Learning and Deep Learning with Python, scikit-learn, and TensorFlow 2, 3/e (Paperback)$1,980$1,881
商品描述
An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance to marketing to astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, and more. Color graphics and real-world examples are used to illustrate the methods presented. Since the goal of this textbook is to facilitate the use of these statistical learning techniques by practitioners in science, industry, and other fields, each chapter contains a tutorial on implementing the analyses and methods presented in R, an extremely popular open source statistical software platform.
Two of the authors co-wrote The Elements of Statistical Learning (Hastie, Tibshirani and Friedman, 2nd edition 2009), a popular reference book for statistics and machine learning researchers. An Introduction to Statistical Learning covers many of the same topics, but at a level accessible to a much broader audience. This book is targeted at statisticians and non-statisticians alike who wish to use cutting-edge statistical learning techniques to analyze their data. The text assumes only a previous course in linear regression and no knowledge of matrix algebra.
商品描述(中文翻譯)
《統計學習導論》提供了統計學習領域的易懂概述,這是一套對於理解過去二十年在生物學、金融、行銷到天體物理等領域出現的龐大且複雜數據集的必要工具。本書介紹了一些最重要的建模和預測技術,以及相關的應用。主題包括線性回歸、分類、重抽樣方法、收縮方法、基於樹的方法、支持向量機、聚類等。書中使用彩色圖形和真實世界的例子來說明所介紹的方法。由於這本教科書的目標是促進科學、工業及其他領域的實務工作者使用這些統計學習技術,因此每一章都包含了在 R 這個極受歡迎的開源統計軟體平台上實施所介紹的分析和方法的教程。
兩位作者共同撰寫了《統計學習的元素》(Hastie, Tibshirani 和 Friedman,第二版 2009),這是一本受歡迎的統計和機器學習研究者的參考書。《統計學習導論》涵蓋了許多相同的主題,但以更廣泛的受眾能夠理解的水平進行介紹。本書的目標讀者是希望使用尖端統計學習技術來分析數據的統計學家和非統計學家。文本僅假設讀者具備線性回歸的先修課程,並不需要具備矩陣代數的知識。
