Practical Numerical Algorithms for Chaotic Systems (混沌系統的實用數值演算法)
Thomas S. Parker, Leon Chua
- 出版商: Springer
- 出版日期: 2011-12-21
- 售價: $2,410
- 貴賓價: 9.5 折 $2,290
- 語言: 英文
- 頁數: 348
- 裝訂: Paperback
- ISBN: 1461281210
- ISBN-13: 9781461281214
-
相關分類:
Algorithms-data-structures
海外代購書籍(需單獨結帳)
相關主題
商品描述
One of the basic tenets of science is that deterministic systems are completely predictable-given the initial condition and the equations describing a system, the behavior of the system can be predicted 1 for all time. The discovery of chaotic systems has eliminated this viewpoint. Simply put, a chaotic system is a deterministic system that exhibits random behavior. Though identified as a robust phenomenon only twenty years ago, chaos has almost certainly been encountered by scientists and engi neers many times during the last century only to be dismissed as physical noise. Chaos is such a wide-spread phenomenon that it has now been reported in virtually every scientific discipline: astronomy, biology, biophysics, chemistry, engineering, geology, mathematics, medicine, meteorology, plasmas, physics, and even the social sci ences. It is no coincidence that during the same two decades in which chaos has grown into an independent field of research, computers have permeated society. It is, in fact, the wide availability of inex pensive computing power that has spurred much of the research in chaotic dynamics. The reason is simple: the computer can calculate a solution of a nonlinear system. This is no small feat. Unlike lin ear systems, where closed-form solutions can be written in terms of the system's eigenvalues and eigenvectors, few nonlinear systems and virtually no chaotic systems possess closed-form solutions.
商品描述(中文翻譯)
科學的基本原則之一是,確定性系統是完全可預測的——給定初始條件和描述系統的方程式,系統的行為可以在所有時間內進行預測。然而,混沌系統的發現已經消除了這一觀點。簡而言之,混沌系統是一種顯示隨機行為的確定性系統。雖然在二十年前才被確定為一種穩健的現象,但科學家和工程師在過去一個世紀中幾乎肯定多次遇到過混沌,只是將其視為物理噪聲。混沌是一種廣泛存在的現象,現在幾乎在每個科學領域都有報導:天文學、生物學、生物物理學、化學、工程學、地質學、數學、醫學、氣象學、等離子體、物理學,甚至社會科學。並非巧合的是,在混沌成為一個獨立研究領域的同兩個十年中,計算機已經滲透到社會中。事實上,廉價計算能力的廣泛可用性促進了混沌動力學的許多研究。原因很簡單:計算機可以計算非線性系統的解。這並不是一件小事。與線性系統不同,線性系統的封閉形式解可以用系統的特徵值和特徵向量來表示,幾乎沒有非線性系統,幾乎沒有混沌系統擁有封閉形式的解。