Density Functional Methods in Chemistry
暫譯: 化學中的密度泛函方法
- 出版商: Springer
- 出版日期: 2011-10-02
- 售價: $2,400
- 貴賓價: 9.5 折 $2,280
- 語言: 英文
- 頁數: 443
- 裝訂: Paperback
- ISBN: 1461278090
- ISBN-13: 9781461278092
-
相關分類:
化學 Chemistry
海外代購書籍(需單獨結帳)
相關主題
商品描述
Predicting molecular structure and energy and explaining the nature of bonding are central goals in quantum chemistry. With this book, the editors assert that the density functional (DF) method satisfies these goals and has come into its own as an advanced method of computational chemistry. The wealth of applications presented in the book, ranging from solid state sys tems and polymers to organic and organo-metallic molecules, metallic clus ters, and biological complexes, prove that DF is becoming a widely used computational tool in chemistry. Progress in the methodology and its imple mentation documented by the contributions in this book demonstrate that DF calculations are both accurate and efficient. In fact, the results of DF calculations may pleasantly surprise many chem ists. Even the simplest approximation of DF, the local spin density method (LSD), yields molecular structures typical of ab initio correlated methods. The next level of theory, the nonlocal spin density method, predicts the energies of molecular processes within a few kcallmol or less. Like the Hartree-Fock (HF) and configuration interaction (CI) methods, the DF method is based only on fundamental physical constants. Therefore, it does not require semiempirical parameters and can be applied to any molecular system and to metallic phases. However, DF's greatest advantage is that it can be applied to much larger systems than those approachable by tradition al ab initio methods, especially when compared with correlated ab initio methods.
商品描述(中文翻譯)
預測分子結構和能量以及解釋鍵結的性質是量子化學的核心目標。編輯們在這本書中主張,密度泛函(DF)方法滿足這些目標,並已經成為計算化學的一種先進方法。書中展示的豐富應用範圍從固態系統和聚合物到有機和有機金屬分子、金屬簇以及生物複合物,證明了DF正成為化學中廣泛使用的計算工具。本書中所記錄的方法學進展及其實施,顯示DF計算既準確又高效。事實上,DF計算的結果可能會讓許多化學家感到驚喜。即使是DF的最簡單近似,即局部自旋密度方法(LSD),也能產生典型於從頭算相關方法的分子結構。下一層次的理論,即非局部自旋密度方法,能在幾千卡每摩爾(kcal/mol)或更少的範圍內預測分子過程的能量。與哈特利-福克(HF)和配置互動(CI)方法類似,DF方法僅基於基本物理常數。因此,它不需要半經驗參數,並且可以應用於任何分子系統和金屬相。然而,DF最大的優勢在於它可以應用於比傳統從頭算方法更大的系統,特別是與相關的從頭算方法相比。