Analyzing the Analyzers: An Introspective Survey of Data Scientists and Their Work (Paperback)
暫譯: 分析分析師:數據科學家及其工作的內省調查 (平裝本)
Harlan Harris, Sean Murphy, Marck Vaisman
- 出版商: O'Reilly
- 出版日期: 2013-07-23
- 定價: $350
- 售價: 8.0 折 $280
- 語言: 英文
- 頁數: 40
- 裝訂: Paperback
- ISBN: 1449371760
- ISBN-13: 9781449371760
-
相關分類:
大數據 Big-data、Data Science、Machine Learning
立即出貨 (庫存=1)
相關主題
商品描述
There has been intense excitement in recent years around activities labeled "data science," "big data," and "analytics." However, the lack of clarity around these terms and, particularly, around the skill sets and capabilities of their practitioners has led to inefficient communication between "data scientists" and the organizations requiring their services. This lack of clarity has frequently led to missed opportunities. To address this issue, we surveyed several hundred practitioners via the Web to explore the varieties of skills, experiences, and viewpoints in the emerging data science community.
We used dimensionality reduction techniques to divide potential data scientists into five categories based on their self-ranked skill sets (Statistics, Math/Operations Research, Business, Programming, and Machine Learning/Big Data), and four categories based on their self-identification (Data Researchers, Data Businesspeople, Data Engineers, and Data Creatives). Further examining the respondents based on their division into these categories provided additional insights into the types of professional activities, educational background, and even scale of data used by different types of Data Scientists.
In this report, we combine our results with insights and data from others to provide a better understanding of the diversity of practitioners, and to argue for the value of clearer communication around roles, teams, and careers.
商品描述(中文翻譯)
近年來,圍繞「資料科學」、「大數據」和「分析」等活動引起了極大的興趣。然而,這些術語的模糊性,特別是其從業者的技能組合和能力,導致了「資料科學家」與需要其服務的組織之間的溝通效率低下。這種不清晰經常導致錯失機會。為了解決這個問題,我們通過網路調查了數百名從業者,以探索新興資料科學社群中的技能、經驗和觀點的多樣性。
我們使用降維技術將潛在的資料科學家根據其自我評估的技能組合(統計學、數學/運籌學、商業、程式設計和機器學習/大數據)劃分為五個類別,並根據其自我認同劃分為四個類別(資料研究者、資料商業人士、資料工程師和資料創意者)。進一步根據這些類別對受訪者進行分析,提供了有關不同類型資料科學家的專業活動、教育背景,甚至使用的資料規模的額外見解。
在本報告中,我們將結果與其他人的見解和數據結合,以提供對從業者多樣性的更好理解,並主張在角色、團隊和職業方面進行更清晰溝通的價值。