Programming Elastic MapReduce: Using AWS Services to Build an End-to-End Application (Paperback)
暫譯: 使用 AWS 服務構建端到端應用程式的 Elastic MapReduce 程式設計 (平裝本)
Kevin Schmidt, Christopher Phillips
- 出版商: O'Reilly
- 出版日期: 2014-01-28
- 定價: $1,200
- 售價: 8.8 折 $1,056
- 語言: 英文
- 頁數: 174
- 裝訂: Paperback
- ISBN: 1449363628
- ISBN-13: 9781449363628
-
相關分類:
Amazon Web Services、分散式架構
立即出貨 (庫存=1)
買這商品的人也買了...
-
$1,880$1,786 -
$620$490 -
$880$862 -
$1,570$1,492 -
$600$540 -
$590$466 -
$780$663 -
$580$452 -
$1,280$1,216 -
$680$578 -
$780$616 -
$380$300 -
$490$417 -
$580$452 -
$420$332 -
$520$411 -
$490$387 -
$450$356 -
$380$300 -
$680$537 -
$690$538 -
$360$284 -
$399Amazon Web Services in Action (Paperback)
-
$380$300 -
$540$459
相關主題
商品描述
Although you don’t need a large computing infrastructure to process massive amounts of data with Apache Hadoop, it can still be difficult to get started. This practical guide shows you how to quickly launch data analysis projects in the cloud by using Amazon Elastic MapReduce (EMR), the hosted Hadoop framework in Amazon Web Services (AWS).
Authors Kevin Schmidt and Christopher Phillips demonstrate best practices for using EMR and various AWS and Apache technologies by walking you through the construction of a sample MapReduce log analysis application. Using code samples and example configurations, you’ll learn how to assemble the building blocks necessary to solve your biggest data analysis problems.
- Get an overview of the AWS and Apache software tools used in large-scale data analysis
- Go through the process of executing a Job Flow with a simple log analyzer
- Discover useful MapReduce patterns for filtering and analyzing data sets
- Use Apache Hive and Pig instead of Java to build a MapReduce Job Flow
- Learn the basics for using Amazon EMR to run machine learning algorithms
- Develop a project cost model for using Amazon EMR and other AWS tools
商品描述(中文翻譯)
雖然您不需要大型計算基礎設施來使用 Apache Hadoop 處理大量數據,但開始時仍然可能會遇到困難。本實用指南將向您展示如何通過使用 Amazon Elastic MapReduce (EMR),即 Amazon Web Services (AWS) 中的託管 Hadoop 框架,快速啟動雲端數據分析項目。
作者 Kevin Schmidt 和 Christopher Phillips 通過引導您構建一個示範的 MapReduce 日誌分析應用程序,展示了使用 EMR 以及各種 AWS 和 Apache 技術的最佳實踐。通過代碼範例和示例配置,您將學會如何組裝解決您最大數據分析問題所需的基本組件。
- 獲取用於大規模數據分析的 AWS 和 Apache 軟體工具概述
- 了解使用簡單日誌分析器執行 Job Flow 的過程
- 發現過濾和分析數據集的有用 MapReduce 模式
- 使用 Apache Hive 和 Pig 代替 Java 來構建 MapReduce Job Flow
- 學習使用 Amazon EMR 運行機器學習算法的基本知識
- 開發使用 Amazon EMR 和其他 AWS 工具的項目成本模型