MapReduce Design Patterns: Building Effective Algorithms and Analytics for Hadoop and Other Systems (Paperback)
暫譯: MapReduce 設計模式:為 Hadoop 及其他系統構建有效的算法與分析
Donald Miner, Adam Shook
- 出版商: O'Reilly
- 出版日期: 2013-01-15
- 定價: $1,480
- 售價: 5.0 折 $740
- 語言: 英文
- 頁數: 250
- 裝訂: Paperback
- ISBN: 1449327176
- ISBN-13: 9781449327170
-
相關分類:
Hadoop、分散式架構、Algorithms-data-structures、Design Pattern
立即出貨(限量) (庫存=2)
買這商品的人也買了...
-
$860$679 -
$1,570$1,492 -
$380$300 -
$1,420$1,349 -
$480$408 -
$199Using Joomla: Building Powerful and Efficient Web Sites (Paperback)
-
$299Joomla! Bible (Paperback)
-
$299Beginning SharePoint 2010 Development (Paperback)
-
$560$442 -
$950$751 -
$399Drupal 7 Bible (Paperback)
-
$2,410$2,290 -
$550$435 -
$1,839Programming Computer Vision with Python: Tools and algorithms for analyzing images (Paperback)
-
$490$387 -
$560$442 -
$680$537 -
$860$731 -
$580$493 -
$1,665CUDA Programming: A Developer's Guide to Parallel Computing with GPUs (Paperback)
-
$2,000$1,900 -
$900The Official Joomla! Book, 2/e (Paperback)
-
$880$695 -
$680$537 -
$1,130$961
相關主題
商品描述
Design patterns for the MapReduce framework, until now, have been scattered among various research papers, blogs, and books. This handy guide brings together a unique collection of valuable MapReduce patterns that will save you time and effort regardless of the domain, language, or development framework you’re using.
Each pattern is explained in context, with pitfalls and caveats clearly identified—so you can avoid some of the common design mistakes when modeling your Big Data architecture. This book also provides a complete overview of MapReduce that explains its origins and implementations, and why design patterns are so important.
Hadoop MapReduce code is provided to help you learn how to apply the design patterns by example.
Topics include:
- Basic patterns, including map-only filter, group by, aggregation, distinct, and limit
- Joins: traditional reduce-side join, reduce-side join with Bloom filter, replicated join with distributed cache, merge join, Cartesian products, and intersections
- Binning, sharding for other systems, sorting, sampling, unions, and other patterns for organizing data
- Job optimization patterns, including multi-job map-only job folding, and overloading the key grouping to perform two jobs at once
商品描述(中文翻譯)
設計模式在 MapReduce 框架中的應用,至今仍散見於各種研究論文、部落格和書籍中。本指南匯集了一系列獨特且有價值的 MapReduce 模式,無論您使用的是哪個領域、語言或開發框架,都能幫助您節省時間和精力。
每個模式都在上下文中進行解釋,並清楚地指出潛在的陷阱和注意事項,讓您在建模大數據架構時能避免一些常見的設計錯誤。本書還提供了 MapReduce 的完整概述,解釋其起源和實現,以及為何設計模式如此重要。
本書提供了 Hadoop MapReduce 代碼,幫助您通過範例學習如何應用這些設計模式。
主題包括:
- 基本模式,包括僅映射過濾、分組、聚合、去重和限制
- 連接:傳統的減少端連接、使用 Bloom 過濾器的減少端連接、使用分散式快取的複製連接、合併連接、笛卡爾積和交集
- 分箱、其他系統的分片、排序、取樣、聯集及其他組織數據的模式
- 工作優化模式,包括多工作僅映射工作折疊,以及重載鍵分組以同時執行兩個工作