Theorem Proving with the Real Numbers (Distinguished Dissertations)
暫譯: 實數的定理證明(傑出論文集)
John Harrison
- 出版商: Springer
- 出版日期: 2011-11-20
- 售價: $4,510
- 貴賓價: 9.5 折 $4,285
- 語言: 英文
- 頁數: 186
- 裝訂: Paperback
- ISBN: 1447115937
- ISBN-13: 9781447115939
海外代購書籍(需單獨結帳)
相關主題
商品描述
This book discusses the use of the real numbers in theorem proving. Typ ically, theorem provers only support a few 'discrete' datatypes such as the natural numbers. However the availability of the real numbers opens up many interesting and important application areas, such as the verification of float ing point hardware and hybrid systems. It also allows the formalization of many more branches of classical mathematics, which is particularly relevant for attempts to inject more rigour into computer algebra systems. Our work is conducted in a version of the HOL theorem prover. We de scribe the rigorous definitional construction of the real numbers, using a new version of Cantor's method, and the formalization of a significant portion of real analysis. We also describe an advanced derived decision procedure for the 'Tarski subset' of real algebra as well as some more modest but practically useful tools for automating explicit calculations and routine linear arithmetic reasoning. Finally, we consider in more detail two interesting application areas. We discuss the desirability of combining the rigour of theorem provers with the power and convenience of computer algebra systems, and explain a method we have used in practice to achieve this. We then move on to the verification of floating point hardware. After a careful discussion of possible correctness specifications, we report on two case studies, one involving a transcendental function.
商品描述(中文翻譯)
本書討論了在定理證明中使用實數的應用。通常,定理證明器僅支持幾種「離散」數據類型,例如自然數。然而,實數的可用性開啟了許多有趣且重要的應用領域,例如浮點硬體和混合系統的驗證。它還允許對許多古典數學分支進行形式化,這對於試圖為計算機代數系統注入更多嚴謹性特別相關。我們的工作是在一個版本的 HOL 定理證明器中進行的。我們描述了實數的嚴謹定義構造,使用了 Cantor 方法的新版本,以及實分析的顯著部分的形式化。我們還描述了一種針對實代數的「Tarski 子集」的先進派生決策程序,以及一些更為簡單但實用的工具,用於自動化顯式計算和常規線性算術推理。最後,我們更詳細地考慮了兩個有趣的應用領域。我們討論了將定理證明器的嚴謹性與計算機代數系統的強大和便利性結合的可取性,並解釋了我們在實踐中使用的一種方法來實現這一點。然後,我們轉向浮點硬體的驗證。在仔細討論可能的正確性規範後,我們報告了兩個案例研究,其中一個涉及超越函數。