Algebraic Number Theory, 2/e (Hardcover)
暫譯: 代數數論,第二版(精裝本)

Richard A. Mollin

買這商品的人也買了...

商品描述

Bringing the material up to date to reflect modern applications, Algebraic Number Theory, Second Edition has been completely rewritten and reorganized to incorporate a new style, methodology, and presentation. This edition focuses on integral domains, ideals, and unique factorization in the first chapter; field extensions in the second chapter; and class groups in the third chapter. Applications are now collected in chapter four and at the end of chapter five, where primality testing is highlighted as an application of the Kronecker–Weber theorem. In chapter five, the sections on ideal decomposition in number fields have been more evenly distributed. The final chapter continues to cover reciprocity laws.

New to the Second Edition

  • Reorganization of all chapters
  • More complete and involved treatment of Galois theory
  • A study of binary quadratic forms and a comparison of the ideal and form class groups
  • More comprehensive section on Pollard’s cubic factoring algorithm
  • More detailed explanations of proofs, with less reliance on exercises, to provide a sound understanding of challenging material

The book includes mini-biographies of notable mathematicians, convenient cross-referencing, a comprehensive index, and numerous exercises. The appendices present an overview of all the concepts used in the main text, an overview of sequences and series, the Greek alphabet with English transliteration, and a table of Latin phrases and their English equivalents.

Suitable for a one-semester course, this accessible, self-contained text offers broad, in-depth coverage of numerous applications. Readers are lead at a measured pace through the topics to enable a clear understanding of the pinnacles of algebraic number theory.

商品描述(中文翻譯)

將材料更新以反映現代應用,代數數論(第二版)已經完全重寫和重新組織,以融入新的風格、方法論和呈現方式。本版的重點在於第一章的整數範疇、理想和唯一分解;第二章的域擴展;以及第三章的類群。應用現在集中在第四章和第五章的結尾,其中強調了素性測試作為 Kronecker–Weber 定理的應用。在第五章中,數域中理想分解的部分已經更均勻地分佈。最後一章繼續涵蓋互反律。

第二版的新內容

- 所有章節的重新組織
- 更完整且深入的伽羅瓦理論處理
- 對二次二元形式的研究以及理想和形式類群的比較
- 更全面的 Pollard 的立方因式分解算法部分
- 對證明的更詳細解釋,減少對練習題的依賴,以提供對挑戰性材料的扎實理解

本書包括著名數學家的迷你傳記、方便的交叉引用、全面的索引和大量練習題。附錄提供了主文本中使用的所有概念的概述、序列和級數的概述、希臘字母及其英語音譯,以及拉丁短語及其英語對應的表格。

本書適合用於一學期的課程,這本易於理解的自成體系的文本提供了廣泛而深入的多種應用的覆蓋。讀者將以適當的速度逐步了解代數數論的巔峰。