Machine Learning: An Algorithmic Perspective (Hardcover)
暫譯: 機器學習:算法視角 (精裝版)

Stephen Marsland

  • 出版商: CRC
  • 出版日期: 2009-04-01
  • 定價: $1,980
  • 售價: 5.0$990
  • 語言: 英文
  • 頁數: 406
  • 裝訂: Paperback
  • ISBN: 1420067184
  • ISBN-13: 9781420067187
  • 相關分類: Machine LearningAlgorithms-data-structures
  • 立即出貨(限量) (庫存=3)

買這商品的人也買了...

商品描述

Traditional books on machine learning can be divided into two groups — those aimed at advanced undergraduates or early postgraduates with reasonable mathematical knowledge and those that are primers on how to code algorithms. The field is ready for a text that not only demonstrates how to use the algorithms that make up machine learning methods, but also provides the background needed to understand how and why these algorithms work. Machine Learning: An Algorithmic Perspective is that text.

Theory Backed up by Practical Examples

The book covers neural networks, graphical models, reinforcement learning, evolutionary algorithms, dimensionality reduction methods, and the important area of optimization. It treads the fine line between adequate academic rigor and overwhelming students with equations and mathematical concepts. The author addresses the topics in a practical way while providing complete information and references where other expositions can be found. He includes examples based on widely available datasets and practical and theoretical problems to test understanding and application of the material. The book describes algorithms with code examples backed up by a website that provides working implementations in Python. The author uses data from a variety of applications to demonstrate the methods and includes practical problems for students to solve.

Highlights a Range of Disciplines and Applications

Drawing from computer science, statistics, mathematics, and engineering, the multidisciplinary nature of machine learning is underscored by its applicability to areas ranging from finance to biology and medicine to physics and chemistry. Written in an easily accessible style, this book bridges the gaps between disciplines, providing the ideal blend of theory and practical, applicable knowledge.

商品描述(中文翻譯)

傳統的機器學習書籍可以分為兩類——針對具有合理數學知識的高年級本科生或早期研究生的書籍,以及介紹如何編寫算法的入門書籍。這個領域需要一本不僅展示如何使用構成機器學習方法的算法,還提供理解這些算法如何運作及其原因所需背景的書籍。《Machine Learning: An Algorithmic Perspective》就是這樣一本書。

理論與實踐範例相輔相成

本書涵蓋神經網絡、圖形模型、強化學習、進化算法、降維方法以及優化這一重要領域。它在學術嚴謹性與不讓學生感到困惑的方程式和數學概念之間取得了微妙的平衡。作者以實用的方式探討這些主題,同時提供完整的信息和參考資料,讓讀者能找到其他的解釋。他包括基於廣泛可用數據集的範例,以及實際和理論問題,以測試對材料的理解和應用。本書描述了帶有代碼範例的算法,並提供一個網站,該網站提供用Python實現的可運行版本。作者使用來自各種應用的數據來演示這些方法,並包括實際問題供學生解決。

強調多種學科和應用範疇

本書從計算機科學、統計學、數學和工程學中汲取靈感,強調機器學習的多學科特性,並展示其在金融、生物學、醫學、物理學和化學等領域的應用。以易於理解的風格撰寫,這本書彌合了學科之間的鴻溝,提供理論與實用知識的理想結合。

最後瀏覽商品 (20)